654 resultados para Reidemeister torsion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nella tesi verranno presi in considerazione tre aspetti: si descriverà come la teoria dei nodi si sia sviluppata nel corso degli anni in relazione alle diverse scoperte scientifiche avvenute. Si potrà quindi subito avere una idea di come questa teoria sia estremamente connessa a diverse altre. Nel secondo capitolo ci si occuperà degli aspetti più formali di questa teoria. Si introdurrà il concetto di nodi equivalenti e di invariante dei nodi. Si definiranno diversi invarianti, dai più elementari, le mosse di Reidemeister, il numero di incroci e la tricolorabilità, fino ai polinomi invarianti, tra cui il polinomio di Alexander, il polinomio di Jones e quello di Kaufman. Infine si spiegheranno alcune applicazioni della teoria dei nodi in chimica, fisica e biologia. Sulla chimica, si definirà la chiralità molecolare e si mostrerà come la chiralità dei nodi possa essere utile nel determinare quella molecolare. In campo fisico, si mostrerà la relazione che esiste tra l'equazione di Yang-Baxter e i nodi. E in conclusione si mostrerà come modellare un importante processo biologico, la recombinazione del DNA, grazie alla teoria dei nodi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eine Gruppe G hat endlichen Prüferrang (bzw. Ko-zentralrang) kleiner gleich r, wenn für jede endlich erzeugte Gruppe H gilt: H (bzw. H modulo seinem Zentrum) ist r-erzeugbar. In der vorliegenden Arbeit werden, soweit möglich, die bekannten Sätze über Gruppen von endlichem Prüferrang (kurz X-Gruppen), auf die wesentlich größere Klasse der Gruppen mit endlichem Ko-zentralrang (kurz R-Gruppen) verallgemeinert.Für lokal nilpotente R-Gruppen, welche torsionsfrei oder p-Gruppen sind, wird gezeigt, dass die Zentrumsfaktorgruppe eine X-Gruppe sein muss. Es folgt, dass Hyperzentralität und lokale Nilpotenz für R-Gruppen identische Bediungungen sind. Analog hierzu sind R-Gruppen genau dann lokal auflösbar, wenn sie hyperabelsch sind. Zentral für die Strukturtheorie hyperabelscher R-Gruppen ist die Tatsache, dass solche Gruppen eine aufsteigende Normalreihe abelscher X-Gruppen besitzen. Es wird eine Sylowtheorie für periodische hyperabelsche R-Gruppen entwickelt. Für torsionsfreie hyperabelsche R-Gruppen wird deren Auflösbarkeit bewiesen. Des weiteren sind lokal endliche R-Gruppen fast hyperabelsch. Für R-Gruppen fallen sehr große Gruppenklassen mit den fast hyperabelschen Gruppen zusammen. Hierzu wird der Begriff der Sektionsüberdeckung eingeführt und gezeigt, dass R-Gruppen mit fast hyperabelscher Sektionsüberdeckung fast hyperabelsch sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, pterosaur skull constructions were analysed using a combined approach of finite element analysis (FEA), static investigations as well as applying classical beam theory and lever mechanics. The study concentrates on the operating regime „bite“, where loads are distributed via the dentition or a keratinous rhamphotheca into the skull during jaw occlusion. As a first step, pterosaur tooth constructions were analysed. The different morphologies of the tooth construction determine specific operational ranges, in which the teeth perform best (= greatest resistance against failure). The incomplete enamel-covering of the pterosaur tooth constructions thereby leads to a reduction of strain and stress and to a greater lateral elasticity than for a complete enamel cover. This permits the development of high and lateral compressed tooth constructions. Further stress-absorption occurs in the periodontal membrane, although its mechanical properties can not be clarified unambiguously. A three-dimensionally preserved skull of Anhanguera was chosen as a case-study for the investigation of the skull constructions. CT-scans were made to get information about the internal architecture, supplemented by thin-sections of a rostrum of a second Anhanguera specimen. These showed that the rostrum can be approximated as a double-walled triangular tube with a large central vacuity and an average wall-thickness of the bony layers of about 1 mm. On base of the CT-scans, a stereolithography of the skull of Anhanguera was made on which the jaw adductor and abductor muscles were modelled, permitting to determine muscular forces. The values were used for the lever mechanics, cantilever and space frame analysis. These studies and the FEA show, that the jaw reaction forces are critical for the stability of the skull construction. The large jugal area ventral to the orbita and the inclined occipital region act as buttresses against these loads. In contrast to the orbitotemporal region which is subject to varying loading conditions, the pattern in the rostrum is less complex. Here, mainly bending in dorsal direction and torsion occur. The hollow rostrum leads to a reduction of weight of the skull and to a high bending and torsional resistance. Similar to the Anhanguera skull construction, the skulls of those pterosaur taxa were analysed, from which enough skull material is know to permit a reliable reconstruction. Furthermore, FEA were made from five selected taxa. The comparison of the biomechanical behaviour of the different skull constructions results in major transformational processes: elongation of rostra, inclination of the occipital region, variation of tooth morphology, reduction of the dentition and replacement of teeth by a keratinous hook or rhamphotheca, fusion of naris and antorbital fenestra, and the development of bony and soft-tissue crests. These processes are discussed for their biomechanical effects during bite. Certain optional operational ranges for feeding are assigned to the different skull constructions and previous hypotheses (e.g. skimming) are verified. Using the principle of economisation, these processes help to establish irreversible transformations and to define possible evolutionary pathways. The resulting constructional levels and the structural variations within these levels are interpreted in light of a greater feeding efficiency and reduction of bony mass combined with an increased stability against the various loads. The biomechanical conclusive pathways are used for comparison and verification of recent hypothesis of the phylogenetic systematics of pterosaurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For an infinite field F, we study the integral relationship between the Bloch group B_2(F) and the higher Chow group CH^2(F,3) by proving some relations corresponding to the functional equations of the dilogarithm. As a second result, the groups involved in Suslin’s exact sequence 0 → Tor^1(F^× ,F^×)∼ → CH^2(F,3) → B_2(F) → 0 are identified with homology groups of the cycle complex Z^2(F,•) computing Bloch’s higher Chow groups. Using these results, we give explicit cycles in motivic cohomology generating the integral motivic cohomology groups of some specific number fields and determine whether a given cycle in the Chow group already lives in one of the other groups of Suslin’s sequence. In principle, this enables us to find a presentation of the codimension two Chow group of an arbitrary number field. Finally, we also prove some relations in the higher Chow groups of codimension three modulo 2-torsion coming from relations in the higher Bloch group B_3(F) modulo 2-torsion. Further, we can prove a series of relations in CH^ 3(Q(zeta_p),5) for a primitive pth root of unity zeta_p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of organic optoelectronics, the nanoscale structure of the materials has huge im-pact on the device performance. Here, scanning force microscopy (SFM) techniques become increasingly important. In addition to topographic information, various surface properties can be recorded on a nanometer length scale, such as electrical conductivity (conductive scanning force microscopy, C-SFM) and surface potential (Kelvin probe force microscopy, KPFM).rnrnIn the context of this work, the electrical SFM modes were applied to study the interplay be-tween morphology and electrical properties in hybrid optoelectronic structures, developed in the group of Prof. J. Gutmann (MPI-P Mainz). In particular, I investigated the working prin-ciple of a novel integrated electron blocking layer system. A structure of electrically conduct-ing pathways along crystalline TiO2 particles in an insulating matrix of a polymer derived ceramic was found and insulating defect structures could be identified. In order to get insights into the internal structure of a device I investigated a working hybrid solar cell by preparing a cross cut with focused ion beam polishing. With C-SFM, the functional layers could be identified and the charge transport properties of the novel active layer composite material could be studied. rnrnIn C-SFM, soft surfaces can be permanently damaged by (i) tip induced forces, (ii) high elec-tric fields and (iii) high current densities close to the SFM-tip. Thus, an alternative operation based on torsion mode topography imaging in combination with current mapping was intro-duced. In torsion mode, the SFM-tip vibrates laterally and in close proximity to the sample surface. Thus, an electrical contact between tip and sample can be established. In a series of reference experiments on standard surfaces, the working mechanism of scanning conductive torsion mode microscopy (SCTMM) was investigated. Moreover, I studied samples covered with free standing semiconducting polymer nano-pillars that were developed in the group of Dr. P. Theato (University Mainz). The application of SCTMM allowed non-destructive imag-ing of the flexible surface at high resolution while measuring the conductance on individual pillarsrnrnIn order to study light induced electrical effects on the level of single nanostructures, a new SFM setup was built. It is equipped with a laser sample illumination and placed in inert at-mosphere. With this photoelectric SFM, I investigated the light induced response in function-alized nanorods that were developed in the group of Prof. R. Zentel (University Mainz). A block-copolymer containing an anchor block and dye moiety and a semiconducting conju-gated polymer moiety was synthesized and covalently bound to ZnO nanorods. This system forms an electron donor/acceptor interface and can thus be seen as a model system of a solar cell on the nanoscale. With a KPFM study on the illuminated samples, the light induced charge separation between the nanorod and the polymeric corona could not only be visualized, but also quantified.rnrnThe results demonstrate that electrical scanning force microscopy can study fundamental processes in nanostructures and give invaluable feedback to the synthetic chemists for the optimization of functional nanomaterials.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gegenstand der Arbeit: Die distale Radiusfraktur ist der häufigste Bruch des Menschen. Neben etablierten Verfahren wie der dorsalen und palmaren Plattenosteosynthese gibt es seit Kurzem neuartige minimalinvasive Osteosynthesesysteme. Gegenstand der vorliegenden Arbeit ist die Untersuchung der biomechanischen Stabilität von zwei neuartigen Implantaten für die distale extraartikuläre Radiusfraktur. rnMethodik: Es handelt sich einerseits um das System XSCREW (Zimmer, Freiburg i. Br., Deutschland), eine kanülierte Schraube, die über den Processus styloideus eingeführt wird und mit bis zu neun Bohrdrähten im Knochen fixiert werden kann. Das Vergleichsimplantat DorsalNailPlate (HandInnovations, Miami, Florida, USA) ist ein Hybrid aus einer dorsalen Platte und einem Marknagel. Beide Systeme wurden an 8 paarigen frischen unfixierten Leichenradii unter Axialbelastung bis 100 N und Torsionsbelastung bis 1,5 Nm getestet. Die A3-Fraktur wurde durch eine standardisierte Keilosteotomie simuliert. Das Biomaterial wurde prä- und postinterventionell sowie nach einem Dauerbelastungstest unter 1000 Zyklen in Rotation mit 0,5 Hz untersucht. Ein Versagenstest mit steigendem Drehmoment beendete das Experiment. rnErgebnisse: Die XSCREW erreichte eine Axialsteifigkeit von 136 N/mm und eine Torsionssteifigkeit von 0,16 Nm/°. Die DNP erzielte hingegen axial 70 N/mm und torsional 0,06 Nm/°. Der Unterschied zwischen beiden Verfahren war nur für die Torsion eindeutig statistisch auffällig (p=0,012), jedoch nicht für die Axialsteifigkeit (p=0,054). Die ursprüngliche Axial- und Torsionssteifigkeit wurde durch die XSCREW signifikant besser wiederhergestellt als durch die DNP (p=0,012). Beide Verfahren erzielten nach der Intervention signifikant niedrigere Steifigkeiten als die intakten Knochen (p=0,012). Ein Präparat der DNP-Gruppe und vier Präparate der XSCREW-Gruppe überstanden den Dauerbelastungstest. Das Drehmoment bei Versagen war mit der XSCREW höher als mit der DNP, der Unterschied zwischen den Verfahren war signifikant (p=0,043). Die Schwachstellen beider Systeme lagen vorwiegend in der proximalen Verankerung im Knochen. Kirschner-Drähte bzw. Verriegelungsschrauben führten unter andauernder Belastung zu einer Spaltung der Kortikalis im Schaftbereich. Bedingt durch die Ausrichtung der distalen Verriegelungen können mit beiden Implantaten Schäden an der radiocarpalen bzw. radioulnaren Gelenkfläche entstehen. rnZusammenfassung: Die XSCREW ermöglicht insgesamt eine höhere mechanische Stabilität als die DNP. Beide Verfahren sind jedoch einer winkelstabilen palmaren Plattenosteosynthese insbesondere unter rotatorischer Dauerbelastung unterlegen und erreichen nicht die Stabilität eines anderen neuartigen minimalinvasiven Systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analisi di apparecchiature esistenti su macchina di prova assiale per l'esecuzione di prove differenti e sviluppo di una nuova attrezzatura per l'esecuzione di prove di torsione pura su macchina assiale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES:: Metacarpal juxta-articular bone is altered in Rheumatoid Arthritis (RA). However, a detailed analysis of disease related geometrical adaptations of the metacarpal shaft is missing. The aim of the present study was to assess the role of RA disease, forearm muscle cross-sectional area (CSA), age and sex on bone geometry at the metacarpal shaft. METHODS:: In 64 RA patients and 128 control subjects geometric properties of the third metacarpal bone mid-shaft and forearm muscle CSA were measured by peripheral quantitative computed tomography (pQCT). Linear models were performed for cortical CSA, total bone CSA, polar stress-strain Index (polar SSI, a surrogate for bone's resistance to bending and torsion), cortical thickness and Metacarpal Index (MI=cortical CSA/total CSA) with explanatory variables muscle CSA, age, RA status and sex. RESULTS:: Forearm muscle CSA was associated with cortical and total metacarpal CSA, and polar SSI. RA group status was associated with all bone parameters except cortical CSA. There was a significant interaction between RA status and age, indicating that the RA group had a greater age-related decrease in cortical CSA, cortical thickness and MI. CONCLUSIONS:: Bone geometry of the metacarpal shaft is altered in RA patients compared to healthy controls. While bone mass of the metacarpal shaft is adapted to forearm muscle mass, cortical thickness and MI are reduced but outer bone shaft circumference and polar SSI increased in RA patients. These adaptations correspond to an enhanced aging pattern in RA patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a new population-based method for the design of bone fixation plates. Standard pre-contoured plates are designed based on the mean shape of a certain population. We propose a computational process to design implants while reducing the amount of required intra-operative shaping, thus reducing the mechanical stresses applied to the plate. A bending and torsion model was used to measure and minimize the necessary intra-operative deformation. The method was applied and validated on a population of 200 femurs that was further augmented with a statistical shape model. The obtained results showed substantial reduction in the bending and torsion needed to shape the new design into any bone in the population when compared to the standard mean-based plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full geometry optimizations using the PM3, AM1, 3-21G∗/HF and 6-31G∗/HF levels of theory were conducted on the syn and anti conformations of cyclic3′,5′-adenosine monophosphate (cAMP). Comparison of the anti crystal structures with the semiempirical and ab initio results revealed that the ab initio results agree well with the experimental results. The results of semiempirical calculations are in qualitative agreement with experimental and ab initio values, with the exception of the glycosyl torsion angle for the anti conformer. Sugar puckering, which is not handled properly by semiempirical methods for unconstrained sugars, nucleosides, nucleotides and nucleotide base pairs, is modeled reasonably well by the semiempirical methods for cAMP. This improvement results from the constraints introduced by the cyclization of AMP to form the phosphodiester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of the pm3 semiempirical quantum mechanical method to reproduce hydrogen bonding in nucleotide base pairs was assessed. Results of pm3 calculations on the nucleotides 2′-deoxyadenosine 5′-monophosphate (pdA), 2′-deoxyguanosine 5′-monophosphate (pdG), 2′-deoxycytidine 5′-monophosphate (pdC), and 2′-deoxythymidine 5′-monophosphate (pdT) and the base pairs pdA–pdT, pdG–pdC, and pdG(syn)–pdC are presented and discussed. The pm3 method is the first of the parameterized nddo quantum mechanical models with any ability to reproduce hydrogen bonding between nucleotide base pairs. Intermolecular hydrogen bond lengths between nucleotides displaying Watson–Crick base pairing are 0.1–0.2 Å less than experimental results. Nucleotide bond distances, bond angles, and torsion angles about the glycosyl bond (χ), the C4′C5′ bond (γ), and the C5′O5′ bond (β) agree with experimental results. There are many possible conformations of nucleotides. pm3 calculations reveal that many of the most stable conformations are stabilized by intramolecular CHO hydrogen bonds. These interactions disrupt the usual sugar puckering. The stacking interactions of a dT–pdA duplex are examined at different levels of gradient optimization. The intramolecular hydrogen bonds found in the nucleotide base pairs disappear in the duplex, as a result of the additional constraints on the phosphate group when part of a DNA backbone. Sugar puckering is reproduced by the pm3 method for the four bases in the dT–pdA duplex. pm3 underestimates the attractive stacking interactions of base pairs in a B-DNA helical conformation. The performance of the pm3 method implemented in SPARTAN is contrasted with that implemented in MOPAC. At present, accurate ab initio calculations are too timeconsuming to be of practical use, and molecular mechanics methods cannot be used to determine quantum mechanical properties such as reaction-path calculations, transition-state structures, and activation energies. The pm3 method should be used with extreme caution for examination of small DNA systems. Future parameterizations of semiempirical methods should incorporate base stacking interactions into the parameterization data set to enhance the ability of these methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that if G is a hypercentral group with all subgroups subnormal, and if the torsion subgroup of G is a pi-group for some finite set pi of primes, then G is nilpotent. In the case where G is not hypercentral there is a section of G that is much like one of the well-known Heineken-Mohamed groups. It is also shown that if G is a residually nilpotent group with all subgroups subnormal whose torsion subgroup satisfies the above condition then G is nilpotent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of dicyanobiphenyl-cyclophanes 1-6 with various pi-backbone conformations and characteristic n-type semiconductor properties is presented. Their synthesis, optical, structural, electrochemical, spectroelectrochemical, and packing properties are investigated. The X-ray crystal structures of all n-type rods allow the systematic correlation of structural features with physical properties. In addition, the results are supported by quantum mechanical calculations based on density functional theory. A two-step reduction process is observed for all n-type rods, in which the first step is reversible. The potential gap between the reduction processes depends linearly on the cos(2) value of the torsion angle phi between the pi-systems. Similarly, optical absorption spectroscopy shows that the vertical excitation energy of the conjugation band correlates with the cos(2) value of the torsion angle phi. These correlations demonstrate that the fixed intramolecular torsion angle phi is the dominant factor determining the extent of electron delocalization in these model compounds, and that the angle phi measured in the solid-state structure is a good proxy for the molecular conformation in solution. Spectroelectrochemical investigations demonstrate that conformational rigidity is maintained even in the radical anion form. In particular, the absorption bands corresponding to the SOMO-LUMO+i transitions are shifted bathochromically, whereas the absorption bands corresponding to the HOMO-SOMO transition are shifted hypsochromically with increasing torsion angle phi.