917 resultados para Random Rooted Labeled Trees
Resumo:
Protein multilayers composed of avidin and biotin-labeled antibody (bio-Ab) were prepared on gold surface by layer-by-layer assembly technology using the high specific binding constant (K-a: approximate to 10(15) M-1) between avidin and biotin. The assembly process of the multilayer films was monitored by using real-time BIA technique based on surface plasmon resonance (SPR). The multilayer films were also characterized by electrochemical impedance spectroscopy (EIS) and reflection absorption Fourier transform infrared spectroscopy (FTIR). The results indicate that the growth of the multilayer is uniform. From response of SPR for each layer, the stoichiometry S for the interaction between avidin and bio-Ab is calculated to be 0.37 in the multilayer whereas 0.82 in the first layer. The protein mass concentration for each layer was also obtained. The schematic figure for the multilayer assembly was proposed according to the layer mass, concentration and S value. The utility of the mutilayer films for immunosensing has been investigated via their subsequent interaction with hIgG. The binding ability of the multilayer increased for one to three layers of antibody, and then reach saturation after the fourth layer. These layer-by-layer constructed antibody multilayers enhance the binding ability than covalently immobilized monolayer antibody. This technology can be also used for construction of other thin films for immunosensing and biosensor.
Resumo:
Naphthalene-labeled polypropylene (PP) was prepared by melt reaction of maleic anhydride-grafted-polypropylene (PP-g-MA) with 1-aminonaphthalene in a Barabender mixer chamber. The structure of the product was analyzed with fourier transform infrared (FT-IR), ultraviolet (UV) and fluorescence. The results showed that naphthyl groups grafted onto the PP molecular chains through the imide bonds formed between MA and 1-aminonaphthalene. The content of the chromophores was 1.8 X 10(-4) mol g(-1) measured by elemental analysis. Isothermal crystallization behavior was studied by differential scanning calorimeter (DSC). Labeled PP had a higher crystallization rate than PP-g-MA. Wide-angle X-Ray diffraction (WAXD) analysis revealed that labeled PP had higher crystallinity than PP-g-MA.
Resumo:
Octadecylamine was derivatized with dansyl chloride (5-dimethylaminonaphthalene-1-sulfonyl chloride) In order to simplify and understand the LB films of fluorescent probe labeling proteins. its monolayer and multilayers in the absence and presence of stearic acid were deposited by LB technique. Fluorescence spectra and lifetimes of the fluorescent products were studied to elucidate the microenvironment of molecules in the LB films.
Resumo:
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A series of novel polyarylethersulfone (AB)(n) block copolymers with different segment lengths have been synthesized by nucleophilic solution polycondensation of phenoxide-terminated and fluorine-terminated oligomers; random copolymers have been prepared over the whole composition ranges. The structures of the resultant copolymers have been confirmed by FTIR, C-13 NMR spectra and differential scanning calorimetry (DSC). Compared with two homopolymers and random copolymers, the block copolymers of this study possess excellent thermal stability (5% thermal decomposition under nitrogen atmosphere above 500 C) and high glass transition temperatures, and have a wide melt-processing temperature range. They may become a new class of mouldable high performance thermoplastics. (C) 2001 Society of Chemical Industry.
Resumo:
Ring-banded spherulites in crystallization of poly(epsilon-caprolactone) and poly (styrene-random-acrylonitrile) blends were observed with polarizing optical microscopy and digital image analysis technique was applied directly to the image obtained by polarizing microscope, Several new interesting phenomena were found. One is that the ring-banded structure is still clearly seen after the analyzer was removed and this astonished phenomenon couldn't result from the general concept about formation mechanism of ring-banded spherulite - lamellae twisting, Another one is that there is a slight, dark line in the bright band when cross polars were added, which may be related to the formation process and mechanism of ring-banded spherulites in the blends of poly (epsilon-caprolactone) and poly (styrene-random-acrylonitrile).
Resumo:
The miscibility of blends of poly(styrene-co-allyl alcohol) (SAA) with poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), poly(n-butyl methacrylate) (PnBMA), poly-epsilon-caprolactone (PCL) or polycarbonate (PC) has been studied by means of NMR, FT-IR and DSC techniques. It was found that SAA and PMMA, PEMA or PCL form miscible blends and SAA is only partially miscible with PC or PnBMA. Both phenyl groups and hydroxyl groups in SAA are involved in the intermolecular interactions between SAA and PMMA, PEMA or PCL. Also the hydroxyl-carbonyl hydrogen bonds existing in all the miscible blends studied are formed partially at the expense of the disruption of self-association of hydroxyl groups in pure SAA. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
The miscibility of blends of poly(styrene-co-acrylonitrile) (SAN) with poly(methyl methacrylate) (PMMA) or poly(ethyl methacrylate) (PEMA) has been investigated by means of NMR and DSC techniques. It is found that there are intermolecular interactions between the phenyl groups in SAN and carbonyl groups in PMMA or PEMA, and the strength of this intermolecular interaction strongly depends on the properties of ester side groups in PEMA or PMMA, composition of the blends and a certain composition of the copolymer. It is this specific interaction instead of the intramolecular repulsion force within the copolymer that plays a key role for the miscibility of SAN/PMMA and SAN/PEMA blends.
Resumo:
The miscibility of blends of poly(vinylidene chloride-co-acrylonitrile) (VDC-AN) and poly(methyl methacrylate) (PMMA) has been studied with DSC, FT-IR, and NMR methods. The results indicate that the VDC-AN/PMMA blends are miscibile on a molecular level, and the dipole-dipole interactions between C=O and C-Cl-2 and/or interpolymer hydrogen bondings between COOCH3 and CN and CCl groups play the role on the miscibility of the blends. It is found that the -CCl2- groups have two different chemical environments in the pure VDC-AN copolymer, which may result from the different configurations of the copolymer, such as -CCl2- groups in the ''alternating'' segments and -CCl2- groups in the ''blocky'' segments as proposed. It is the -CCl2- group in the ''alternating'' segment that takes part in the dipole-dipole interaction with C=O group in PMMA.
Resumo:
The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The special action of TEO solution was investigated by 1D, 2D-NMR in CDCl3. For the present measurements, when the concentration of TEO was higher in CDCl3, the chemical shift difference (Delta delta) and the peak number of C-13 NMR spectrum were changed with increasing the solution concentration, At lower concentration(< 3% V/V ), the peaks will be closed together for -CH2O- resonance carbon and it is not the appearance of the narrowed, When temperature was changed, the Delta delta value was contrary to the solvent effect, So, the shifts of the resonance carbon in the NMR spectra indicated clearly that the complex formation for the system of CDCl3, and TEO molecular interaction were affected by the experiment temperature and the solution concentration.
Resumo:
The miscibility of blends of PMMA with SMA (50 wt% MA) has been investigated by means of NMR, FTIR and DSC techniques. The results indicate that the SMA/PMMA blends are miscible on a molecular level, and there are strong intermolecular interactions between the phenyl groups in SMA and carbonyl groups in PMMA. It is the intermolecular interactions instead of the intramolecular repulsion forces within the SMA copolymer that make the SMA/PMMA blends miscible. It is also found that the strength of the intermolecular interactions to some degree depends on the compositions of the blends.
Resumo:
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.
Resumo:
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42,134-149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313-351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313-351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971-5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present research, the study of Song (2004) for random interfacial waves in two-layer fluid is extended to the case of fluids moving at different steady uniform speeds. The equations describing the random displacements of the density interface and the associated velocity potentials in two-layer fluid are solved to the second order, and the wave-wave interactions of the wave components and the interactions between the waves and currents are described. As expected, the extended solutions include those obtained by Song (2004) as one special case where the steady uniform currents of the two fluids are taken as zero, and the solutions reduce to those derived by Sharma and Dean (1979) for random surface waves if the density of the upper fluid and the current of the lower fluid are both taken as zero.