984 resultados para Public water supply
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.
Resumo:
This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.
Resumo:
We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.
Resumo:
Using a dynamic systems model specifically developed for Piracicaba, Capivari and Jundia River Water Basins (BH-PCJ) as a tool to help to analyze water resources management alternatives for policy makers and decision takers, five simulations for 50 years timeframe were performed. The model estimates water supply and demand, as well as wastewater generation from the consumers at BH-PCJ. A run was performed using mean precipitation value constant, and keeping the actual water supply and demand rates, the business as usual scenario. Under these considerations, it is expected an increment of about similar to 76% on water demand, that similar to 39% of available water volume will come from wastewater reuse, and that waste load increases to similar to 91%. Falkenmark Index will change from 1,403 m(3) person(-1) year(-1) in 2004, to 734 m(3) P(-1) year(-1) by 2054, and the Sustainability Index from 0.44 to 0.20. Another four simulations were performed by affecting the annual precipitation by 90 and 110%; considering an ecological flow equal to 30% of the mean daily flow; and keeping the same rates for all other factors except for ecological flow and household water consumption. All of them showed a tendency to a water crisis in the near future at BH-PCJ.
Resumo:
Nowadays, the rising competition for the use of water and environmental resources with consequent restrictions for farmers should change the paradigm in terms of irrigation concepts, or rather, in order to attain economical efficiency other than to supply water requirement for the crop. Therefore, taking into account the social and economical role of bean activity in Brazil, as well as the risk inherent to crop due to its high sensibility to both deficit and excessive water, the optimization methods regarding to irrigation management have become more interesting and essential. This study intends to present a way to determine the optimal water supply, considering different combinations between desired bean yield and level of risk, bringing as a result a graph with the former associated with the latter, depending on different water depths.
Resumo:
In this study, 20 Brazilian public schools have been assessed regarding good manufacturing practices and standard sanitation operating procedures implementation. We used a checklist comprised of 10 parts ( facilities and installations, water supply, equipments and tools, pest control, waste management, personal hygiene, sanitation, storage, documentation, and training), making a total of 69 questions. The implementing modification cost to the found nonconformities was also determined so that it could work with technical data as a based decision-making prioritization. The average nonconformity percentage at schools concerning to prerequisite program was 36%, from which 66% of them own inadequate installations, 65% waste management, 44% regarding documentation, and 35% water supply and sanitation. The initial estimated cost for changing has been U.S.$24,438 and monthly investments of 1.55% on the currently needed invested values. This would result in U.S.$0.015 increase on each served meal cost over the investment replacement within a year. Thus, we have concluded that such modifications are economically feasible and will be considered on technical requirements when prerequisite program implementation priorities are established.
Resumo:
Systems approaches can help to evaluate and improve the agronomic and economic viability of nitrogen application in the frequently water-limited environments. This requires a sound understanding of crop physiological processes and well tested simulation models. Thus, this experiment on spring wheat aimed to better quantify water x nitrogen effects on wheat by deriving some key crop physiological parameters that have proven useful in simulating crop growth. For spring wheat grown in Northern Australia under four levels of nitrogen (0 to 360 kg N ha(-1)) and either entirely on stored soil moisture or under full irrigation, kernel yields ranged from 343 to 719 g m(-2). Yield increases were strongly associated with increases in kernel number (9150-19950 kernels m(-2)), indicating the sensitivity of this parameter to water and N availability. Total water extraction under a rain shelter was 240 mm with a maximum extraction depth of 1.5 m. A substantial amount of mineral nitrogen available deep in the profile (below 0.9 m) was taken up by the crop. This was the source of nitrogen uptake observed after anthesis. Under dry conditions this late uptake accounted for approximately 50% of total nitrogen uptake and resulted in high (>2%) kernel nitrogen percentages even when no nitrogen was applied,Anthesis LAI values under sub-optimal water supply were reduced by 63% and under sub-optimal nitrogen supply by 50%. Radiation use efficiency (RUE) based on total incident short-wave radiation was 1.34 g MJ(-1) and did not differ among treatments. The conservative nature of RUE was the result of the crop reducing leaf area rather than leaf nitrogen content (which would have affected photosynthetic activity) under these moderate levels of nitrogen limitation. The transpiration efficiency coefficient was also conservative and averaged 4.7 Pa in the dry treatments. Kernel nitrogen percentage varied from 2.08 to 2.42%. The study provides a data set and a basis to consider ways to improve simulation capabilities of water and nitrogen effects on spring wheat. (C) 1997 Elsevier Science B.V.
Resumo:
Glucose intolerance in fluorosis areas and when fluoride is administered for the treatment of osteoporosis has been reported. Controlled fluoridation of drinking water is regarded as a safe and effective measure to control dental caries. However, the effect on glucose homeostasis was not studied so far. The aim of this study was to evaluate the effect of the intake of fluoridated water supply on glucose metabolism in rats with normal and deficient renal function. Male Sprague-Dawley rats were divided into eight groups of four rats. Renal insufficiency was induced in four groups (NX) which received drinking water containing 0, 1, 5, and 15 ppm F (NaF) for 60 days. Four groups with simulated surgery acted as controls. There were no differences in plasma glucose concentration after a glucose tolerance test between controls and NX rats and among rats with different intakes of fluoride. However, plasma insulin level increased as a function of fluoride concentration in drinking water, both in controls and in NX rats. It is concluded that the consumption of fluoridated water from water supply did not affect plasma glucose levels even in cases of animals with renal disease. However, a resistance to insulin action was demonstrated.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
O aumento do uso de agrotóxicos no Brasil tem causado muitas preocupações, tanto em relação à questão ambiental quanto a saúde pública. Muitos desses compostos não são eficientemente removidos das águas por tratamento convencional, sendo necessárias alternativas que os removam das águas de abastecimento. Dentre as tecnologias existentes, a adsorção em CAP é considerada uma das mais efetivas e confiáveis, cujas vantagens incluem alta eficiência de remoção e facilidade de operação. O objetivo desta pesquisa é avaliar a remoção, em escala piloto, do agrotóxico 2,4-D e o seu principal metabólito 2,4-DCP em amostras de águas tratadas por adsorção em CAP associado ao tratamento convencional. Os testes foram realizados em instalação piloto na áreada ETA Carapina/CESAN. A água bruta foi a proveniente do rio Santa Maria da Vitória contaminadaatravés da adição de agrotóxico em sua fórmula comercial. Foram realizados quatro ensaios, dois sem adição de CAP e dois com adição de CAP junto à unidade de mistura rápida. Os agrotóxicos foram detectados e quantificados através da cromatografia líquida de alta eficiência, em metodologia validada. As amostras coletadas foram caracterizadas de acordo com os parâmetros: temperatura, turbidez, condutividade elétrica, absorbância em 254 nm, cor real, cor aparente, alcalinidade, carbono orgânico total, além e concentração dos agrotóxicos 2,4-D e ácido 2,4,5-T e do metabólito 2,4-DCP. Os diferentes ensaios foram avaliados em termos da taxa de remoção destes parâmetros. Como resultado no TCVcom adição de CAP o composto de interesse foi removido abaixo de 30 μg. L-1,Valor Máximo Permitido, estabelecido pela Portaria do MS n° 2.914/2011 para dosagem de 100μg.L-1e mostrou-se eficiente, também, na remoção de matéria orgânica. Em nenhum dos testes foi detectado o composto 2,4-DCP e 2,4,5-T.
Resumo:
A água é um bem essencial ao ser humano. Nos dias de hoje é de extrema importância fazer chegar este bem às populações, um papel que no nosso país é desempenhado pelos municípios, por empresas municipais e por empresas concessionadas. Este relatório, enquadrado no âmbito do trabalho final de mestrado em Engenharia Civil, especialização em Hidráulica, no Instituto Superior de Engenharia de Lisboa, cujo título é “Conservação, Manutenção e Construção de Património Estratégico das Águas de Santarém”, relata a experiência de estágio do autor do presente relatório na A.S. – Empresa das Águas de Santarém – EM, S.A. O relatório aborda as temáticas do abastecimento de água, do tratamento de águas residuais, da construção de sistemas de saneamento e estações de tratamento de águas residuais, da reparação de equipamentos da empresa e do consumo de energia dos equipamentos da empresa. São descritas as actividades desenvolvidas pelo autor, que incluem o acompanhamento activo em visitas a obras de construção e manutenção de património, a monitorização e controlo de perdas de água, bem como a actualização em suporte informático do cadastro dos equipamentos pertencentes à A.S., com a criação de fichas de equipamento individuais e de um suporte informático para registo e consulta comparativa de consumos energéticos. Esta experiência de estágio permitiu ao autor um contacto com a realidade de uma empresa em toda a diversidade das actividades anteriormente nomeadas, que será descrita objectivamente nos capítulos do presente documento. O estágio foi claramente enriquecedor para o autor, fornecendo-lhe formação objectiva e a preparação necessária para a sua integração no mercado de trabalho nesta área específica da Engenharia Civil.
Resumo:
Dissertação de Mestrado em Engenharia do Ambiente
Resumo:
Trabalho de Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil do Ramo Hidráulica
Resumo:
In a “perfect” drinking water system, the water quality for the consumers should be the same as the quality of the water leaving the treatment plant. However, some variability along the system can lead to a decrease in water quality (such as discolouration) which is usually reflected in the number of the customer complaints. This change may be related to the amount of sediment in the distribution network, leading to an increase in turbidity at the water supply. Since there is no such thing as a perfect drinking water system, the behaviour of particles in a drinking water network needs a suitable approach in order to understand how it works. Moreover, the combination of measurements, such as turbidity patterns and the Resuspension Potential Method (RPM) aid in the prevention of discoloured water complaints and intervention in the treatment upgrade or the network cleaning. Besides sediments there is also bacterial regrowth in the network, which is related to the water quality and distribution network characteristics. In a theoretical drinking water system higher velocities, temperature and shorter residences times lead to wider bacterial growth. In this study we observe velocity and residence steady-states and bacterial does not seem to be related to either. It can be concluded that adequate measurements of RPM, customer complaints and bacterial concentrations allow a wider knowledge on particle behaviour in drinking water systems.