979 resultados para Psychological tests
Resumo:
This paper presents a comparison between theoretical predictions and experimental results from a pin-on-disc test rig exploring friction-induced vibration. The model is based on a linear stability analysis of two systems coupled by sliding contact at a single point. Predictions are compared with a large volume of measured squeal initiations that have been post-processed to extract growth rates and frequencies at the onset of squeal. Initial tests reveal the importance of including both finite contact stiffness and a velocity-dependent dynamic model for friction, giving predictions that accounted for nearly all major clusters of squeal initiations from 0 to 5 kHz. However, a large number of initiations occurred at disc mode frequencies that were not predicted with the same parameters. These frequencies proved remarkably difficult to destabilise, requiring an implausibly high coefficient of friction. An attempt has been made to estimate the dynamic friction behaviour directly from the squeal initiation data, revealing complex-valued frequency-dependent parameters for a new model of linearised dynamic friction. These new parameters readily destabilised the disc modes and provided a consistent model that could account for virtually all initiations from 0 to 15 kHz. The results suggest that instability thresholds for a wide range of squeal-type behaviour can be predicted, but they highlight the central importance of a correct understanding and accurate description of dynamic friction at the sliding interface. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present reaction free energy calculations using the adaptive buffered force mixing quantum mechanics/molecular mechanics (bf-QM/MM) method. The bf-QM/MM method combines nonadaptive electrostatic embedding QM/MM calculations with extended and reduced QM regions to calculate accurate forces on all atoms, which can be used in free energy calculation methods that require only the forces and not the energy. We calculate the free energy profiles of two reactions in aqueous solution: the nucleophilic substitution reaction of methyl chloride with a chloride anion and the deprotonation reaction of the tyrosine side chain. We validate the bf-QM/MM method against a full QM simulation, and show that it correctly reproduces both geometrical properties and free energy profiles of the QM model, while the electrostatic embedding QM/MM method using a static QM region comprising only the solute is unable to do so. The bf-QM/MM method is not explicitly dependent on the details of the QM and MM methods, so long as it is possible to compute QM forces in a small region and MM forces in the rest of the system, as in a conventional QM/MM calculation. It is simple, with only a few parameters needed to control the QM calculation sizes, and allows (but does not require) a varying and adapting QM region which is necessary for simulating solutions.
Resumo:
Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.
Resumo:
The development is described of a computer-controlled bowing machine that can bow a string with a range of gestures that match or exceed the capabilities of a human violinist. Example measurements of string vibration under controlled bowing conditions are shown, including a Schelleng diagram and a set of Guettler diagrams, for the open D string of a cello. For some results a rosin-coated rod was used in place of a conventional bow, to provide quantitative data for comparison with theoretical predictions. The results show qualitative consistency with the predictions of Schelleng and Guettler, but details are revealed that go beyond the limitations of existing models. © S. Hirzel Verlag · EAA.
Resumo:
We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.
Resumo:
This thesis describes two programs for generating tests for digital circuits that exploit several kinds of expert knowledge not used by previous approaches. First, many test generation problems can be solved efficiently using operation relations, a novel representation of circuit behavior that connects internal component operations with directly executable circuit operations. Operation relations can be computed efficiently by searching traces of simulated circuit behavior. Second, experts write test programs rather than test vectors because programs are more readable and compact. Test programs can be constructed automatically by merging program fragments using expert-supplied goal-refinement rules and domain-independent planning techniques.
Resumo:
In practice, piles are most often modelled as "Beams on Non-Linear Winkler Foundation" (also known as “p-y spring” approach) where the soil is idealised as p-y springs. These p-y springs are obtained through semi-empirical approach using element test results of the soil. For liquefied soil, a reduction factor (often termed as p-multiplier approach) is applied on a standard p-y curve for the non-liquefied condition to obtain the p-y curve liquefied soil condition. This paper presents a methodology to obtain p-y curves for liquefied soil based on element testing of liquefied soil considering physically plausible mechanisms. Validation of the proposed p-y curves is carried out through the back analysis of physical model tests.