961 resultados para Photo Voltaic (PV)
Resumo:
A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP∕GaInAs∕Ge 3J cell and a concentration Back‐Point‐Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell′s reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free‐form RXI‐type concentrator with a band‐pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band‐pass filter sends the IR photons in the 900–1200 nm band to the silicon cell. Computer simulations predict that four‐terminal terminal designs could achieve ∼46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof‐of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ∼ 100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%
Resumo:
With the rising prices of the retail electricity and the decreasing cost of the PV technology, grid parity with commercial electricity will soon become a reality in Europe. This fact, together with less attractive PV feed-in-tariffs in the near future and incentives to promote self-consumption suggest, that new operation modes for the PV Distributed Generation should be explored; differently from the traditional approach which is only based on maximizing the exported electricity to the grid. The smart metering is experiencing a growth in Europe and the United States but the possibilities of its use are still uncertain, in our system we propose their use to manage the storage and to allow the user to know their electrical power and energy balances. The ADSM has many benefits studied previously but also it has important challenges, in this paper we can observe and ADSM implementation example where we propose a solution to these challenges. In this paper we study the effects of the Active Demand-Side Management (ADSM) and storage systems in the amount of consumed local electrical energy. It has been developed on a prototype of a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead–acid batteries, controllable appliances and smart metering. We carried out simulations for long-time experiments (yearly studies) and real measures for short and mid-time experiments (daily and weekly studies). Results show the relationship between the electricity flows and the storage capacity, which is not linear and becomes an important design criterion.
Resumo:
Photovoltaic modules based on thin film technology are gaining importance in the photovoltaic market, and module installers and plant owners have increasingly begun to request methods of performing module quality control. These modules pose additional problems for measuring power under standard test conditions (STC), beyond problems caused by the temperature of the module and the ambient variables. The main difficulty is that the modules’ power rates may vary depending both on the amount of time they have been exposed to the sun during recent hours and on their history of sunlight exposure. In order to assess the current state of the module, it is necessary to know its sunlight exposure history. Thus, an easily accomplishable testing method that ensures the repeatability of the measurements of the power generated is needed. This paper examines different tests performed on commercial thin film PV modules of CIS, a-Si and CdTe technologies in order to find the best way to obtain measurements. A method for obtaining indoor measurements of these technologies that takes into account periods of sunlight exposure is proposed. Special attention is paid to CdTe as a fast growing technology in the market.
Resumo:
Inverter features are reviewed from a PV systems perspective, with a view to contributing to possible codes, procurement specifications and testing procedures, in order to assure the technical quality of these systems. A laboratory testing campaign has been carried out on a representative set of sixteen currently available inverters and a set of the most common AC appliances. The results of the tests are discussed with the aim of divulging the particular features of operating AC appliances in PV systems and the provisions to be taken into account in PV system design. The development of testing procedures has followed the motto ?keep it as simple as possible?, in order to make their application easier in conventional laboratories in developing countries.
Resumo:
This paper describes the practical design of a portable capacitive load based on insulated gate bipolar transistors (IGBTs), which is used to measure the I–V characteristics of PV arrays with short-circuit currents up to 80 A and open circuit voltages up to 800 V. Such measurement allows on-site characterization of PV arrays under real operating conditions and also provides information for the detection of potential array anomalies, such as broken cells or defective connections. The presented I–V load is easy to reproduce and low-cost, characteristics that are within the reach of small-scale organizations involved in PV electrification projects.
Resumo:
In October 2002, under the auspices of Spanish Cooperation, a pilot electrification project put into operation two centralised PV-diesel hybrid systems in two different Moroccan villages. These systems currently provide a full-time energy service and supply electricity to more than a hundred of families, six community buildings, street lighting and one running water system. The appearance of the electricity service is very similar to an urban one: one phase AC supply (230V/50Hz) distributed up to each dwelling using a low-voltage mini-grid, which has been designed to be fully compatible with a future arrival of the utility grid. The management of this electricity service is based on a “fee-for-service” scheme agreed between a local NGO, partner of the project, and electricity associations created in each village, which are in charge of, among other tasks, recording the daily energy production of systems and the monthly energy consumption of each house. This register of data allows a systematic evaluation of both the system performance and the energy consumption of users. Now, after four years of operation, this paper presents the experience of this pilot electrification project and draws lessons that can be useful for designing, managing and sizing this type of small village PV-hybrid system
Resumo:
This paper details an investigation into the appearance of hot-spots in two large grid-connected photovoltaics (PV) plants, which were detected after the visual inspection of trackers whose energy output was decreasing at anomalous rate. Detected hot-spots appeared not only in the solar cells but also in resistive solder bonds (RSB) between cells and contact ribbons. Both types cause similar irreversible damage to the PV modules, but the latter are the main responsible for the detected decrease in energy output, which was confirmed in an experimental testing campaign. The results of this investigation, for example, how hot-spots were detected or their impact on the output power of PV modules, may be of interest for the routine maintenance of large grid-connected PV plants.
Resumo:
This paper presents a simple mathematical model to estimate shading losses on PV arrays. The model is applied directly to power calculations, without the need to consider the whole current–voltage curve. This allows the model to be used with common yield estimation software. The model takes into account both the shaded fraction of the array area and the number of blocks (a group of solar cells protected by a bypass diode) affected by shade. The results of an experimental testing campaign on several shaded PV arrays to check the validity of model are also reported.
Resumo:
This study assessed the applicability of a ferrous oxalate mediated photo-Fenton pretreatment for indigo-dyed wastewaters as to produce a biodegradable enough effluent, likely of being derived to conventional biological processes. The photochemical treatment was performed with ferrous oxalate and hydrogen peroxide in a Compound Parabolic Concentrator (CPC) under batch operation conditions. The reaction was studied at natural pH conditions (5–6) with indigo concentrations in the range of 6.67–33.33 mg L−1, using a fixed oxalate-to-iron mass ratio (C2O42−/Fe2+ = 35) and assessing the system's biodegradability at low (257 mg L−1) and high (1280 mg L−1) H2O2 concentrations. In order to seek the optimal conditions for the treatment of indigo dyed wastewaters, an experimental design consisting in a statistical surface response approach was carried out. This analysis revealed that the best removal efficiencies for Total Organic Carbon (TOC) were obtained for low peroxide doses. In general it was observed that after 20 kJ L−1, almost every treated effluent increased its biodegradability from a BOD5/COD value of 0.4. This increase in the biodegradability was confirmed by the presence of short chain carboxylic acids as intermediate products and by the mineralization of organic nitrogen into nitrate. Finally, an overall decrease in the LC50 for Artemia salina indicated a successful detoxification of the effluent.
Resumo:
GaN and InGaN nanocolumns of various compositions are studied by room-temperature photoluminescence (PL) under different ambient conditions. GaN nanocolumns exhibit a reversible quenching upon exposure to air under constant UV excitation, following a t−1/2 time dependence and resulting in a total reduction of intensity by 85–90%, as compared to PL measured in vacuum, with no spectral change. This effect is not observed when exposing the samples to pure nitrogen. We attribute this effect to photoabsorption and photodesorption of oxygen that modifies the surface potential bending. InGaN nanocolumns, under the same experimental conditions do not show the same quenching features: The high-energy part of the broad PL line is not modified by exposure to air, whereas a lower-energy part, which does quench by 80–90%, can now be distinguished. We discuss the different behaviors in terms of carrier localization and possible composition or strain gradients in the InGaN nanocolumns.
Resumo:
We have analyzed the increase of the sheet conductance (ΔG□) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high ΔG□, even higher than that measured in a silicon reference sample. This increase in the ΔG□ magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition.
Resumo:
The quality and the reliability of the power generated by large grid-connected photovoltaic (PV) plants are negatively affected by the source characteristic variability. This paper deals with the smoothing of power fluctuations because of geographical dispersion of PV systems. The fluctuation frequency and the maximum fluctuation registered at a PV plant ensemble are analyzed to study these effects. We propose an empirical expression to compare the fluctuation attenuation because of both the size and the number of PV plants grouped. The convolution of single PV plants frequency distribution functions has turned out to be a successful tool to statistically describe the behavior of an ensemble of PV plants and determine their maximum output fluctuation. Our work is based on experimental 1-s data collected throughout 2009 from seven PV plants, 20 MWp in total, separated between 6 and 360 km.
Resumo:
To date, the majority of quality controls performed at PV plants are based on the measurement of a small sample of individual modules. Consequently, there is very little representative data on the real Standard Test Conditions (STC) power output values for PV generators. This paper presents the power output values for more than 1300 PV generators having a total installed power capacity of almost 15.3 MW. The values were obtained by the INGEPER-UPNA group, in collaboration with the IES-UPM, through a study to monitor the power output of a number of PV plants from 2006 to 2009. This work has made it possible to determine, amongst other things, the power dispersion that can be expected amongst generators made by different manufacturers, amongst generators made by the same manufacturer but comprising modules of different nameplate ratings and also amongst generators formed by modules with the same characteristics. The work also analyses the STC power output evolution over time in the course of this 4-year study. The values presented here could be considered to be representative of generators with fault-free modules.
Neural network controller for active demand side management with PV energy in the residential sector
Resumo:
In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.
Resumo:
New PV self-orientating roof based on a balanced movement