917 resultados para Pesticide Residues
Resumo:
Crop residues returned to the soil are important to preserve fertility and sustainability. This research addressed the long-term decomposition of sugarcane post-harvest residues (trash) under reduced tillage, therefore field renewal was performed with herbicide followed by subsoiling and ratoons were deprived of interrow scarification. The trial was conducted in the northern Sao Paulo State, Brazil during four consecutive crops (2005-2008) where litter bags containing N-15-labeled trash were disposed in the field attempting to simulate two distinct situations: the previous crop trash (PCT) or residues incorporated in the field after tillage, and post-harvest trash (PHT) or the remains of plant-cane harvest. Decomposition rates regarding dry matter (DM), carbon (C), root growth, plant nutrients (N, P, K, Ca, Mg and S), lignin (LIG) cellulose (CEL) and hemicellulose (HCEL) contents were assessed for PCT (2005 ndash;2008) and for PHT (2006-2008). There were significant reductions on DM and C:N ratio due to C losses and root growth within the litter bags over time. The DM from PCT and PHT decreased 96% and 73% after four and three crops, respectively, and the higher nutrients release were found for K, Ca and N. The LIG, CEL and HCEL concentrations in PCT decreased 60%, 29%, 70% after four crops and 47%, 35%, 70% from PHT after three crops, respectively. Trash decomposition was driven mainly by residues biochemical composition, root growth within the trash blanket and the climatic conditions during the crop cycles. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the efficacy of three rotary instrument systems (K3, Pro Taper and Twisted File) in removing calcium hydroxide residues from root canal walls. Thirty-four human mandibular incisors were instrumented with the Pro Taper System up to the F2 instrument, irrigated with 2.5% NaOCl followed by 17% EDTA, and filled with a calcium hydroxide intracanal dressing. After 7 days, the calcium hydroxide dressing was removed using the following rotary instruments: G1. - NiTi size 25, 0.06 taper, of the K3 System; G2 - NiTi F2, of the Pro Taper System; or G3 - NiTi size 25, 0.06 taper, of the Twisted File System. The teeth were longitudinally grooved on the buccal and lingual root surfaces, split along their long axis, and their apical and cervical canal thirds were evaluated by SEM (x1000). The images were scored and the data were statistically analyzed using the Kruskall Wallis test. None of the instruments removed the calcium hydroxide dressing completely, either in the apical or cervical thirds, and no significant differences were observed among the rotary instruments tested (p > 0.05).
Resumo:
Electrochemical lead analyses of gunshot residues (GSRs) were performed using an acidic solution with a bare gold microelectrode in the presence of chloride ions. GSRs from four different guns (0.38 in. revolver, 12 caliber pump-action shotgun, 0.38 repeating rifle, and a 0.22 caliber semi-automatic rifle) and six different types of ammunition (CleanRange (R), normal, semi-jacketed, especial 24g (R), 3T (R), CBC (R), and Eley (R)) were analyzed. Results obtained with the proposed methodology were compared with those from an atomic absorption spectrometry analysis, and a paired Student's t-test indicated that there was no significant difference between them at the 95% confidence level. With this methodology, a detection limit of 1.7 nmol L-1 (3 sigma/slope), a linear range between 10 and 100 nmol L-1, and a relative standard deviation of 2.5% from 10 measurements were obtained. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Gunshot residues (GSR) can be used in forensic evaluations to obtain information about the type of gun and ammunition used in a crime. In this work, we present our efforts to develop a promising new method to discriminate the type of gun [four different guns were used: two handguns (0.38 revolver and 0.380 pistol) and two long-barrelled guns (12-calibre pump-action shotgun and 0.38 repeating rifle)] and ammunition (five different types: normal, semi-jacketed, full-jacketed, green, and 3T) used by a suspect. The proposed approach is based on information obtained from cyclic voltammograms recorded in solutions containing GSR collected from the hands of the shooters, using a gold microelectrode; the information was further analysed by non-supervised pattern-recognition methods [(Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)]. In all cases (gun and ammunition discrimination), good separation among different samples in the score plots and dendrograms was achieved. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of incubation, and A. flavus had a half-life of more than 75 minutes. At 55°C, the xylanase produced by A. niger showed more stable than from A. flavus showing a half-life of more than 45 minutes. The xylanase activity of A. niger and A. flavus were somehow protected in the presence of glycerol 5% when compared to the control (without additives). On the biobleaching assay it was observed that the xylanase from A. flavus was more effective in comparison to A. niger. The kappa efficiency corresponded to 36.32 and 25.93, respectively. That is important to emphasize that the cellulase activity was either analyzed and significant levels were not detected, which explain why the viscosity was not significantly modified.
Resumo:
Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.
Resumo:
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells.
Resumo:
[EN] Background: All the relevant risk factors contributing to breast cancer etiology are not fully known. Exposure to organochlorine pesticides has been linked to an increased incidence of the disease, although not all data have been consistent. Most published studies evaluated the exposure to organochlorines individually, ignoring the potential effects exerted by the mixtures of chemicals. Methods: This population-based study was designed to evaluate the profile of mixtures of organochlorines detected in 103 healthy women and 121 women diagnosed with breast cancer from Gran Canaria Island, and the relation between the exposure to these compounds and breast cancer risk.Results: The most prevalent mixture of organochlorines among healthy women was the combination of lindane and endrin, and this mixture was not detected in any affected women. Breast cancer patients presented more frequently a combination of aldrin, dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), and this mixture was not found in any healthy woman. After adjusting for covariables, the risk of breast cancer was moderately associated with DDD (OR = 1.008, confidence interval 95% 1.001-1.015, p = 0.024).Conclusions: This study indicates that healthy women show a very different profile of organochlorine pesticide mixtures than breast cancer patients, suggesting that organochlorine pesticide mixtures could play a relevant role in breast cancer risk.
Resumo:
The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.
Resumo:
Pharmaceutical residues contaminate aquatic ecosystems as a result of their widespread human and veterinary usage. Since continuously released and not efficiently removed, certain pharmaceuticals exhibit pseudo-persistence thus generating concerns for the health of aquatic wildlife. This work aimed at assessing on mussels Mytilus galloprovincialis, under laboratory conditions, the effects of three pharmaceuticals, carbamazepine (antiepileptic), propranolol (β-blocker) and oxytetracycline (antibiotic), to evaluate if the human-based mode of action of these molecules is conserved in invertebrates. Furthermore, in the framework of the European MEECE Programme, mussels were exposed to oxytetracycline and copper at increasing temperatures, simulating variations due to climate changes. The effects of these compounds were assessed evaluating a battery of biomarkers, the expression of HSP70 proteins and changes in cAMP-related parameters. A decrease in lysosomal membrane stability, induction of oxidative stress, alterations of cAMP-dependent pathway and the induction of defense mechanisms were observed indicating the development of a stress syndrome, and a worsening in mussels health status. Data obtained in MEECE Programme confirmed that the toxicity of substances can be enhanced following changes in temperature. The alterations observed were obtained after exposure to pharmaceuticals at concentrations sometimes lower than those detected in the aquatic environment. Hence, further research is advisable regarding subtle effects of pharmaceuticals on non-target organisms. Furthermore, results obtained during a research stay in the laboratories of Cádiz University (Spain) are presented. The project aimed at measuring possible effects of polluted sediments in Algeciras Bay (Spain) and in Cádiz Bay, by assessing different physiological parameters in caged crabs Carcinus maenas and clams Ruditapes decussatus exposed in situ for 28 days. The neutral red retention assay was adapted to these species and proved to be a sensitive screening tool for the assessment of sediment quality.
Resumo:
Neonicotinoids have been pointed to as a factor responsible for the increased honey bee colony losses in the last decades. Many studies have investigated the effects of the first marketed neonicotinoid, imidacloprid, while fewer have focused on thiamethoxam. One recent study showed that sublethal doses of thiamethoxam lead to colony failure by decreasing forager homing flight success. We thus decided to investigate the mechanism which caused this phenomenon. Our hypothesis was that this effect was caused by impairment of forager locomotion abilities. Therefore we tested the effects of sublethal acute and chronic exposures to thiamethoxam on forager walking (Chapter 2) and flight (Chapter 3) performances. The acute treatment (1.34 ng/bee) affected walking locomotion firstly triggering hyperactivity (30 min post-treatment) and then impairing motor functioning (60 min post-treatment). 2-day continuous exposures to thiamethoxam (32.5, 45 ppb) elicited fewer effects on walking locomotion, however both exposure modes elicited an increased positive phototaxis. Similarly, in flight experiments, the single dose (1.34 ng/bee) elicited hyperactivity shortly after intoxication (increased flight duration and distance), while longer and continuous exposures (32.5, 45 ppb) impaired forager motor functions (decreased flight duration, distance, velocity). It is known that flight muscles temperature needs to be precisely regulated by bees during flight. Therefore, we further hypothesized that the impaired flight performances of neonicotinoid intoxicated bees were caused also by thermoregulation anomalies. We tested the effects that acute thiamethoxam exposures (0.2, 1, 2 ng/bee) elicit on forager thorax temperature (Chapter 4). Foragers treated with high doses exhibited hyperthermia or hypothermia when respectively exposed to high or low environmental temperatures. In summary, we show that sublethal doses of thiamethoxam affected forager walking and flight locomotion, phototaxis and thermoregulation. We also display the intricate mode of action of thiamethoxam which triggered, at different extents, inverse sublethal effects in relation to time and dose.
Resumo:
Previous work has shown that the -tocopherol transfer protein ( -TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which -TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of -TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of -TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired -TTP-assisted secretion of -tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.
Resumo:
Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5 restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5 splice variant TRIM5 in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.