784 resultados para PHOSPHOLIPID-BILAYERS
Resumo:
La messa a punto di tecniche come il patch clamp e la creazione di doppi strati lipidici artificiali (artificial bilayers) ha permesso di effettuare studi su canali ionici per valutarne la permeabilità, la selettività ionica, la dipendenza dal voltaggio e la cinetica, sia in ambito di ricerca, per analizzarne il funzionamento specifico, sia in quello farmaceutico, per studiare la risposta cellulare a nuovi farmaci prodotti. Tali tecniche possono essere inoltre impiegate nella realizzazione di biosensori, combinando così i vantaggi di specificità e sensibilità dei sistemi biologici alla veloce risposta quantitativa degli strumenti elettrochimici. I segnali in corrente che vengono rilevati con questi metodi sono dell’ordine dei pA e richiedono perciò l’utilizzo di strumentazioni molto costose e ingombranti per amplificarli, analizzarli ed elaborarli correttamente. Il gruppo di ricerca afferente al professor Tartagni della facoltà di ingegneria di Cesena ha sviluppato un sistema miniaturizzato che possiede molte delle caratteristiche richieste per questi studi. L’obiettivo della tesi riguarda la caratterizzazione sperimentale di tale sistema con prove di laboratorio eseguite in uno spazio ridotto e senza l’impiego di ulteriori strumentazioni ad eccezione del PC. In particolare le prove effettuate prevedono la realizzazione di membrane lipidiche artificiali seguita dall’inserimento e dallo studio del comportamento di due particolari canali ionici comunemente utilizzati per questa tipologia di studi: la gramicidina A, per la facilità d’inserimento nella membrana e per la bassa conduttanza del singolo canale, e l’α-emolisina, per l’attuale impiego nella progettazione e realizzazione di biosensori. Il presente lavoro si sviluppa in quattro capitoli di seguito brevemente riassunti. Nel primo vengono illustrate la struttura e le funzioni svolte dalla membrana cellulare, rivolgendo particolare attenzione ai fosfolipidi e alle proteine di membrana; viene inoltre descritta la struttura dei canali ionici utilizzati per gli esperimenti. Il secondo capitolo comprende una descrizione del metodo utilizzato per realizzare i doppi strati lipidici artificiali, con riferimento all’analogo elettrico che ne risulta, ed una presentazione della strumentazione utilizzata per le prove di laboratorio. Il terzo e il quarto capitolo sono dedicati all’elaborazione dei dati raccolti sperimentalmente: in particolare vengono prima analizzati quelli specifici dell’amplificatore, quali quelli inerenti il rumore che si somma al segnale utile da analizzare e la variabilità inter-prototipo, successivamente si studiano le prestazioni dell’amplificatore miniaturizzato in reali condizioni sperimentali e dopo aver inserito i canali proteici all’interno dei bilayers lipidici.
Resumo:
The aim of the work was to explore the practical applicability of molecular dynamics at different length and time scales. From nanoparticles system over colloids and polymers to biological systems like membranes and finally living cells, a broad range of materials was considered from a theoretical standpoint. In this dissertation five chemistry-related problem are addressed by means of theoretical and computational methods. The main results can be outlined as follows. (1) A systematic study of the effect of the concentration, chain length, and charge of surfactants on fullerene aggregation is presented. The long-discussed problem of the location of C60 in micelles was addressed and fullerenes were found in the hydrophobic region of the micelles. (2) The interactions between graphene sheet of increasing size and phospholipid membrane are quantitatively investigated. (3) A model was proposed to study structure, stability, and dynamics of MoS2, a material well-known for its tribological properties. The telescopic movement of nested nanotubes and the sliding of MoS2 layers is simulated. (4) A mathematical model to gain understaning of the coupled diffusion-swelling process in poly(lactic-co-glycolic acid), PLGA, was proposed. (5) A soft matter cell model is developed to explore the interaction of living cell with artificial surfaces. The effect of the surface properties on the adhesion dynamics of cells are discussed.
Resumo:
Biological systems are complex and highly organized architectures governed by noncovalent interactions, which are responsible for molecular recognition, self-assembly, self-organization, adaptation and evolution processes. These systems provided the inspiration for the development of supramolecular chemistry, that aimed at the design of artificial multicomponent molecular assemblies, namely supramolecular systems, properly designed to perform different operations: each constituting unit performs a single act, whereas the entire supramolecular system is able to execute a more complex function, resulting from the cooperation of the constituting components. Supramolecular chemistry deals with the development of molecular systems able to mimic naturally occurring events, for example complexation and self-assembly through the establishment of noncovalent interactions. Moreover, the application of external stimuli, such as light, allows to perform these operations in a time- and space-controlled manner. These systems can interact with biological systems and, thus, can be applied for bioimaging, therapeutic and drug delivery purposes. In this work the study of biocompatible supramolecular species able to interact with light is presented. The first part deals with the photophysical, photochemical and electrochemical characterization of water-soluble blue emitting triazoloquinolinium and triazolopyridinium salts. Moreover, their interaction with DNA has been explored, in the perspective of developing water-soluble systems for bioimaging applications. In the second part, the effect exerted by the presence of azobenzene-bearing supramolecular species in liposomes, inserted both in the phospholipid bilayer and in the in the aqueous core of vesicles has been studied, in order to develop systems able to deliver small molecules and ions in a photocontrolled manner. Moreover, the versatility of azobenzene and its broad range of applications have been highlighted, since conjugated oligoazobenzene derivatives proved not to be adequate to be inserted in the phospholipid bilayer of liposomes, but their electrochemical properties made them interesting candidates as electron acceptor materials for photovoltaic applications.
Resumo:
This work is focused on the development of high quality nanoporous 1D photonic crystals –so called Bragg stacks – made by spin-coating of approximately 25 nm large SiO2 and TiO2 nanoparticles bearing interparticle voids large enough to infiltrate reactive species. Therefore, the first part of this work describes the synthesis of well-dispersed TiO2 nanoparticles in this size range (the corresponding SiO2 nanoparticles are commercially available). In the second part, a protocol was developed to prepare nanoporous Bragg stacks of up to 12 bilayers with high quality and precision. Tailor-made Bragg stacks were prepared for different applications such as (i) a surface emitting feedback laser with a FWHM of only 6 nm and (ii) an electrochromic device with absorption reversibly switchable by an external electrical bias independently of the Bragg reflection. In the last chapter, the approach to 1D photonic crystals is transferred to 1D phononic crystals. Contrast in the modulus is achieved by spin-coating SiO2 and PMMA as high and low moduli material. This system showed a band gap of fg = 12.6 GHz with a width of Dfg/fg = 4.5 GHz.
Resumo:
We present a coarse grained model for computer simulations of lipid mixtures, which we use to study generic mechanisms for the formation of nanoscale membrane structures (lipid rafts). We observe that even a two component system can separate into rafts of finite size, and we study these rafts and other membrane structures in detail. We look at the characteristics of our model that enable these phenomena and how they may relate to lipid-cholesterol or lipid-lipid mixtures. We propose an explanation for our findings using elastic theory to describe a possible mechanism of raft stabilization via curvature differences between coexisting lipid phases and we investigate whether this theory can be used to explain the results of our computer simulations.
Resumo:
Bei der Untersuchung von Membranproteinen bedarf es der Entwicklung von neuen Methoden, da Standardmethoden, entwickelt für lösliche Proteine, meist nicht auf Membranproteine angewendet werden können. Das größte Problem besteht in der schlechten Wasserlöslichkeit der Membranproteine, da diese sich in vivo in einer hydrophoben Umgebung, der Membran, befinden. Um dennoch isolierte Membranproteine und ihre Faltung in vitro charakterisieren zu können, sind membranmimetische Systeme notwendig um Membranproteine in Lösung zu bringen. In dieser Arbeit wurden Lysophosphocholin Detergenzien, die Copolymere Amphipol A8-35, p(HMPA)-co-p(LMA) sowie synthetische Membranen aus Phospholipiden auf Ihre Eigenschaften in wässriger Lösung untersucht, und deren Auswirkungen auf die Solubilisierung und Dimerisierung der Glykophorin A (GpA)-Transmembranhelix analysiert. Es wurde erstmals gezeigt, dass die Aggregtionszahl von Detergenzmizellen die Dimerisierung von GpA beeinflusst. Die Copolymere A8-35 und pHPMA-pLMA sind in der Lage die Sekundärstruktur von GpA sowie dessen Dimer zu stabilisieren. Allerdings ist dies bei pHPMA-pLMA Copolymeren erst ab einem LMA-Anteil von über 15% möglich. In synthetischen Membranen zeigte die Dimerisierung von GpA eine Abhängigkeit von negativ geladenen Lipiden, die die Dimerisierung zwar vermindern aber die Ausbildung der Transmembranhelix fördern. Eine Zugabe von physiologischen Konzentrationen an Calciumionen ändert die Membraneigenschaften drastisch aber die Dimerisierung von GpA wird nur geringfügig beeinflusst.
Resumo:
Die Kontroverse über den Glasübergang im Nanometerbereich, z. B. die Glas¬über¬gangs-temperatur Tg von dünnen Polymerfilmen, ist nicht vollständig abgeschlossen. Das dynamische Verhalten auf der Nanoskala ist stark von den einschränkenden Bedingungen abhängig, die auf die Probe wirken. Dünne Polymerfilme sind ideale Systeme um die Dynamik von Polymerketten unter der Einwirkung von Randbedingungen zu untersuchen, wie ich sie in dieser Arbeit variiert habe, um Einblick in dieses Problem zu erhalten.rnrnResonanzverstärkte dynamische Lichtstreuung ist eine Methode, frei von z.B. Fluoreszenzmarkern, die genutzt werden kann um in dünnen Polymerfilmen dynamische Phänomene
Resumo:
Die Entstehung und Evolution des genetischen Codes, der die Nukleotidsequenz der mRNA in die Aminosäuresequenz der Proteine übersetzt, zählen zu den größten Rätseln der Biologie. Die ersten Organismen, die vor etwa 3,8 Milliarden Jahren auf der Erde auftraten, nutzten einen ursprünglichen genetischen Code, der vermutlich ausschließlich abiotisch verfügbare Aminosäuren terrestrischer oder extraterrestrischer Herkunft umfasste. Neue Aminosäuren wurden sukzessive biosynthetisiert und selektiv in den Code aufgenommen, welcher in der modernen Form aus bis zu 22 Aminosäuren besteht. Die Ursachen für die Selektion und die Chronologie ihrer Aufnahme sind bis heute unbekannt und sollten im Rahmen der vorliegenden Arbeit erforscht werden. Auf Grundlage quanten-chemischer Berechnungen konnte in dieser Arbeit zunächst ein Zusammenhang zwischen der HOMO-LUMO-Energiedifferenz (H-L-Distanz), die ein inverses quanten-chemisches Korrelat für allgemeine chemische Reaktivität darstellt, und der chronologischen Aufnahme der Aminosäuren in den genetischen Code aufgezeigt werden. Demnach sind ursprüngliche Aminosäuren durch große H-L-Distanzen und neue Aminosäuren durch kleine H-L-Distanzen gekennzeichnet. Bei einer Analyse des Metabolismus von Tyrosin und Tryptophan, bei denen es sich um die beiden jüngsten Standard-Aminosäuren handelt, wurde ihre Bedeutung als Vorläufer von Strukturen ersichtlich, die sich durch eine hohe Redox-Aktivität auszeichnen und deren Synthese gleichzeitig molekularen Sauerstoff erfordert. Aus diesem Grund wurden die Redox-Aktivitäten der 20 Standard-Aminosäuren gegenüber Peroxylradikalen und weiteren Radikalen getestet. Die Untersuchungen ergaben eine Korrelation zwischen evolutionärem Auftreten und chemischer Reaktivität der jeweiligen Aminosäure, die sich insbesondere in der effizienten Reaktion zwischen Tryptophan bzw. Tyrosin und Peroxylradikalen widerspiegelte. Dies indizierte eine potentielle Bedeutung reaktiver Sauerstoffspezies (ROS) bei der Konstituierung des genetischen Codes. Signifikante Mengen an ROS wurden erst zu Beginn der Oxygenierung der Geobiosphäre, die als Great Oxidation Event (GOE) bezeichnet wird und vor circa 2,3 Milliarden Jahren begann, gebildet und müssen zur oxidativen Schädigung vulnerabler, zellulärer Strukturen geführt haben. Aus diesem Grund wurde das antioxidative Potential von Aminosäuren beim Prozess der Lipidperoxidation untersucht. Es konnte gezeigt werden, dass lipophile Derivate von Tryptophan und Tyrosin befähigt sind, die Peroxidation von Rattenhirnmembranen zu verhindern und humane Fibroblasten vor oxidativem Zelltod zu schützen. Daraus gründete sich das in dieser Arbeit aufgestellte Postulat eines Selektionsvorteils primordialer Organismen während des GOEs, die Tryptophan und Tyrosin als redox-aktive Aminosäuren in Membranproteine einbauen konnten und somit vor Oxidationsprozessen geschützt waren. Demzufolge wurde die biochemische Reaktivität als Selektionsparameter sowie oxidativer Stress als prägender Faktor der Evolution des genetischen Codes identifiziert.
Resumo:
Phosphatidylethanol (PEth) is an abnormal phospholipid carrying two fatty acid chains. It is only formed in the presence of ethanol via the action of phospholipase D (PLD). Its use as a biomarker for alcohol consumption is currently under investigation. Previous methods for the analysis of PEth included high-performance liquid chromatography (HPLC) coupled to an evaporative light scattering detector (ELSD), which is unspecific for the different homologues--improved methods are now based on time of flight mass spectrometry (TOF-MS) and tandem mass spectrometry (MS/MS). The intention of this work was to identify as many homologues of PEth as possible. A screening procedure using multiple-reaction monitoring (MRM) for the identified homologues has subsequently been established. For our investigations, autopsy blood samples collected from heavy drinkers were used. Phosphatidylpropanol 16:0/18:1 (internal standard) was added to the blood samples prior to liquid-liquid extraction using borate buffer (pH 9), 2-propanol and n-hexane. After evaporation, the samples were redissolved in the mobile phase and injected into the LC-MS/MS system. Compounds were separated on a Luna Phenyl Hexyl column (50 mm x 2 mm, 3 microm) by gradient elution, using 2 mM ammonium acetate and methanol/acetone (95/5; v/v). A total of 48 homologues of PEth could be identified by using precursor ion and enhanced product ion scans (EPI).
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
Thrombophilia has been associated with pregnancy complications and recurrent miscarriage. The aim of this systematic review was to evaluate the controversial association between thrombophilia and failures of assisted reproduction technology (ART). A systematic search of the literature for studies reporting on thrombophilia in women undergoing ART up to April 2011 yielded 33 studies (23 evaluating anti-phospholipid antibodies, 5 inherited thrombophilia, and 5 both) involving 6092 patients. Overall, methodologic quality of the studies was poor. Combined results from case-control studies showed that factor V Leiden was significantly more prevalent among women with ART failure compared with fertile parous women or those achieving pregnancy after ART (odds ratio = 3.08; 95% confidence interval, 1.77-5.36). The prothrombin mutation, methylenetetrahydrofolate reductase mutation, deficiency of protein S, protein C, or anti-thrombin were all not associated with ART failure. Women with ART failure tested more frequently positive for anti-phospholipids antibodies (odds ratio = 3.33; 95% confidence interval, 1.77-6.26) with evidence of high degree of between-study heterogeneity (I(2) = 75%; P < .00001). Prospective cohort studies did not show significant associations between thrombophilia and ART outcomes. Although case-control studies suggest that women experiencing ART failures are more frequently positive for factor V Leiden and anti-phospholipid antibodies, the evidence is inconclusive and not supported by cohort studies.
Resumo:
A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could have more general implications for many physiological membrane-related functions that are relevant for health and disease.
Resumo:
Phosphatidylinositol-specific phospholipases C (PI-PLC) are known to participate in many eukaryotic signal transduction pathways and act as virulence factors in lower organisms. Glycerophosphoryl diester phosphodiesterase (GDPD) enzymes are involved in phosphate homeostasis and phospholipid catabolism for energy production. Streptomyces antibioticus phosphatidylinositol-specific phospholipase C (SaPLC1) is a 38 kDa enzyme that displays characteristics of both enzyme superfamilies, representing an evolutionary link between these divergent enzyme classes. SaPLC1 also boasts a unique catalytic mechanism that involves a trans 1,6-cyclic inositol phosphate intermediate instead of the typical cis 1,2-cyclic inositol phosphate. The mechanism by which this occurs is still unclear. To attack this problem, we established a wide mutagenesis scan of the active site and measured activities of alanine mutants. A chemical rescue assay was developed to verify that the activity loss was due to the removal of the functional role of the mutated residue. 31P-NMR was employed in characterizing and quantifying intermediates in mutants that slowed the reaction sufficiently. We found that the H37A and H76A mutations support the hypothesis that these structurally conserved residues are also conserved in terms of their catalytic roles. H37 was found to be the general base (GB), while H76 plays the role of general acid (GA). K131 was identified as a semi-conserved key positive charge donor found at the entrance of the active site. By elucidating the SaPLC1 mechanism in relation to its active site architecture, we have increased our understanding of the structure-function relations that support catalysis in the PI-PLC/GDPD superfamily. These findings provide groundwork for in vivo studies of SaPLC1 function and its possible role in novel signaling or metabolism in Streptomyces.
Resumo:
The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.
Resumo:
The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.