998 resultados para PARASITE DENSITY
Resumo:
Following infection with the protozoan parasite Leishmania major, C57BL/6 mice develop a small lesion that heals spontaneously. Resistance to infection is associated with the development of CD4(+) Th1 cells producing gamma interferon (IFN-gamma) and tumor necrosis factor (TNF), which synergize in activating macrophages to their microbicidal state. We show here that C57BL/6 mice lacking both TNF and Fas ligand (FasL) (gld TNF(-/-) mice) infected with L. major neither resolved their lesions nor controlled Leishmania replication despite the development of a strong Th1 response. Comparable inducible nitric oxide synthase (iNOS) activities were detected in lesions of TNF(-/-), gld TNF(-/-), and gld mice, but only gld and gld TNF(-/-) mice failed to control parasite replication. Parasite numbers were high in gld mice and even more elevated in gld TNF(-/-) mice, suggesting that, in addition to iNOS, the Fas/FasL pathway is required for successful control of parasite replication and that TNF contributes only a small part to this process. Furthermore, FasL was shown to synergize with IFN-gamma for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Interestingly, TNF(-/-) mice maintained large lesion size throughout infection, despite being able to largely control parasite numbers. Thus, IFN-gamma, FasL, and iNOS appear to be essential for the complete control of parasite replication, while the contribution of TNF is more important in controlling inflammation at the site of parasite inoculation.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
BACKGROUND: The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). METHODS: Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. RESULTS: The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. CONCLUSION: Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.
Resumo:
We performed an analysis of a substudy of the randomized Tamoxifen Exemestane Adjuvant Multinational trial to determine the effects of exemestane (EXE) and tamoxifen (TAM) adjuvant treatment on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry compared with the trabecular bone score, a novel grey-level texture measurement that correlates with 3-dimensional parameters of bone texture in postmenopausal women with hormone receptor-positive breast cancer for the first time. In total, 36 women were randomized to receive TAM (n = 17) or EXE (n = 19). Patients receiving TAM showed a mean increase of BMD in lumbar spine from baseline of 1.0%, 1.5%, and 1.9% and in trabecular bone score of 2.2%, 3.5%, and 3.3% at 6-, 12-, and 24-mo treatment, respectively. Conversely, patients receiving EXE showed a mean decrease from baseline in lumbar spine BMD of -2.3%, -3.6%, and -5.3% and in trabecular bone score of -0.9%, -1.7%, and -2.3% at 6-, 12-, and 24-mo treatment, respectively. Changes in trabecular bone score from baseline at spine were also significantly different between EXE and TAM: p = 0.05, 0.007, and 0.006 at 6, 12, and 24mo, respectively. TAM induced an increase in BMD and bone texture analysis, whereas EXE resulted in decreases. The results were independent from each other.
Resumo:
Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are presented for the barrier for the reaction Na20++Na20+¿Na402+. The deviation from the simple Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the supermolecule (Na20+)2. An extension of conventional quantum-chemical studies of homonuclear diatomic molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows the Na results to be utilized to make semiquantitative predictions of position and height of the maximum of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT calculations for the K clusters.
Resumo:
BACKGROUND: One of the major issues concerning disease ecology and conservation is knowledge of the factors that influence the distribution of parasites and consequently disease outbreaks. This study aimed to investigate avian haemosporidian composition and the distribution of these parasites in three altitudinally separated great tit (Parus major) populations in western Switzerland over a three-year period. The objectives were to determine the lineage diversity of parasites occuring across the study populations and to investigate whether altitudinal gradients govern the distribution of haemosporidian parasites by lineage. METHODS: In this study molecular approaches (PCR and sequencing) were used to detect avian blood parasites (Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp.) in populations of adult great tits caught on their nests during three consecutive breeding seasons. RESULTS: High levels of parasite prevalence (88-96%) were found across all of the study populations with no significant altitude effect. Altitude did, however, govern the distribution of parasites belonging to different genera, with Plasmodium parasites being more prevalent at lower altitudes, Leucocytozoon parasites more at high altitude and Haemoproteus parasite prevalence increasing with altitude. A total of 27 haemosporidian parasite lineages were recorded across all study sites, with diversity showing a positive correlation to altitude. Parasites belonging to lineage SGS1 (P. relictum) and PARUS4 and PARUS19 (Leucocytozoon sp.) dominated lower altitudes. SW2 (P. polare) was the second most prevalent lineage of parasite detected overall and these parasites were responsible for 68% of infections at intermediate altitude, but were only documented at this one study site. CONCLUSIONS: Avian haemosporidian parasites are not homogeneously distributed across host populations, but differ by altitude. This difference is most probably brought about by environmental factors influencing vector prevalence and distribution. The high occurrence of co-infection by different genera of parasites might have pronounced effects on host fitness and should consequently be investigated more rigorously.
Resumo:
Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.
Resumo:
The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.
Resumo:
We have studied the structure and dipole charge-density response of nanorings as a function of the magnetic field using local-spin-density-functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of narrow and wide rings. The results are qualitatively compared with experimental data existing on microrings and on antidots. A smaller ring containing five electrons is also analyzed to allow for a closer comparison with a recent experiment on a two-electron quantum ring.
Resumo:
We have employed time-dependent local-spin density-functional theory to analyze the multipole spin and charge density excitations in GaAs-AlxGa1-xAs quantum dots. The on-plane transferred momentum degree of freedom has been taken into account, and the wave-vector dependence of the excitations is discussed. In agreement with previous experiments, we have found that the energies of these modes do not depend on the transferred wave vector, although their intensities do. Comparison with a recent resonant Raman scattering experiment [C. Schüller et al., Phys. Rev. Lett. 80, 2673 (1998)] is made. This allows us to identify the angular momentum of several of the observed modes as well as to reproduce their energies