888 resultados para Ordered mesoporous silicas
Resumo:
Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Nos últimos anos o mercado de crédito brasileiro apresentou grande crescimento em termos de volume e modalidade de operações de crédito. Além disso, observou-se também o aumento da participação dos bancos nesse setor, principais intermediários financeiros da economia. Com isso, em um mercado em desenvolvimento, torna-se cada vez mais importante a correta avaliação e administração do risco financeiro envolvido nas operações: o risco de crédito. Nesse contexto, a classificação de rating surge como referência para investidores. No entanto, como o mercado bancário brasileiro ainda é pouco desenvolvido, apenas instituições de grande porte são classificados pelas agências de rating em funcionamento no país. Este trabalho tem como objetivo o desenvolvimento de uma metodologia de rating baseada no modelo ordered probit, que seja capaz de replicar o nível de rating de uma determinada agência, e assim conseguir estimar o nível de rating para aqueles bancos que não têm a referida classificação de rating
Resumo:
Este Artigo Testa a Proposição da Teoria Econômica de que Propriedade Intelectual e Defesa da Concorrência são Políticas Complementares. um Modelo Probit Ordenado é Utilizado para Estimar os Efeitos Marginais do Uso e Qualidade do Enforcement dos Direitos de Propriedade Intelectual em uma Medida da Gravidade dos Problemas Relacionados À Concorrência. os Resultados Obtidos Reforçam a Noção de que as Políticas de Concorrência e Propriedade Intelectual não são Contraditórias.
Resumo:
A strong greenish-light photoluminescence (PL) emission was measured at room temperature for disordered and ordered powders of CaMoO4 prepared by the polymeric precursor method. The structural evolution from disordered to ordered powders was accompanied by XRD. Raman spectroscopy, and TEM imagery. High-level quantum mechanical calculations in the density functional framework were used to interpret the formation of the structural defects of disorder powders in terms of band diagram and density of states. Complex cluster vacancies [MoO3 center dot V-O(z)] and [CaO7 center dot V-O(z)] (where V-O(z) = V-O(X), V-O(center dot), V-O(center dot center dot)) were suggested to be responsible to the appearance of new states shallow and deeply inserted in the band gap. These defects give rise to the PL in disordered powders. The natural PL emission of ordered CaMoO4 was attributed to an intrinsic slight distortion of the [MoO4] tetrahedral in the short range.
Resumo:
An experimentally based kinetic and mechanistic study of the hydrogen oxidation reaction (HOR) on platinum and platinum ordered intermetallic materials in acid medium is presented. RDE kinetic data were re-evaluated and complemented by Tafel plots obtained from chronoamperometric measurements. Among the materials evaluated, PtSb and PtSn exhibited markedly improved kinetic current densities and exchange current densities, compared to Pt in the same experimental conditions. It is proposed that the intermetallic phase enhanced the adsorptive characteristic of the surface sites and, as a consequence, improved the kinetics of the adsorption steps (Tafel or Heyrovsky) of the mechanism involved. (c) 2006 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This describes an experimental evaluation of the electrocatalytic activity of the hydrogen oxidation reaction on electrodes of platinum and the ordered intermetallic phases PtSb and PtSn, on which CO has previously been deposited. The experiments were carried out in perchloric acid solution and the analysis based on steady-state polarization curves and Tafel plots derived from chronoamperometric data. Both intermetallics, PtSb and PtSn, performed better than Pt towards the HOR, when their surface was deliberately covered with CO. It is suggested that the intermetallic surfaces have a lower affinity for CO molecules, causing a lower CO coverage on these surfaces, and/or a weaker surface-CO interaction, compared to Pt under the same conditions. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The recent interest in obtaining functionalized nanoporous materials for applications such as heterogeneous catalysts and adsorption of CO2 has increased today. In the latter application, the introduction of amino groups such as present in the chitosan (CS), in the nanoporous materials like SBA-15 to generate specific interactions with CO2 has gained importance. In this work were performed to hydrothermal synthesis of SBA-15 and subsequent impregnation of the CS in the support mesoporous by the method of the wet impregnation. The materials were characterized by TG/DTG, DSC, XRD, SEM, FTIR and adsorption / desorption of N2. The XRD showed that the ordered structure of the support SBA-15 was preserved after the impregnation and calculations have shown that the average pore diameter (Dp) and / or the average wall thickness (wt) have been changed due to introduction of the CS in the samples functionalized. The curves of TG and DSC data corroborates the XRD, indicating the presence of CS in the nanoporous structure of SBA-15, as well as micrographs of samples, which allowed the display state of aggregation of the material obtained. The characteristics of bands absorption in the region of the CS in the FTIR were identified and interpreted in the samples functionalized, confirming the further characterization. Measurements showed that the BET surface area decreases in the functionalized samples, indicating the successive incorporation of the polymer in the nanoporous support. The activation energy apparent (Ea) for the process of thermal degradation of CS in the impregnated support was determined by the methods of kinetic freedom Vyazovkin and Ozawa-Flynn-Wall with the results indicating that the sample functionalized CS/SBA-15 2,5 % was decrease of the Ea in their degradation of about 10% compared to 1,0 % CS/SBA-15 sample
Resumo:
We report the effect of solvent on the rhodamine 6G encapsuled into channels of mesoporous silica, synthesized by two-step process that gives intermediary stable hybrid micelles. Mesoporous materials have been obtained by the method that involves surfactant micelles (mainly cationic) and inorganic precursor of the structure to be obtained. MSU-X type mesoporous silica has been synthesized with polyethylene oxide surfactant as the directing-structure agent and tetraethyl orthosilicate Si(OEt)(4) as the silica source. The influence of the solvent on the encapsulation of rhodamine dye was systematically explored, specially its influence on the luminescence properties. Rhodamine 6G encapsuled into mesoporous silica channel was characterized by UV-Vis and luminescence spectroscopies, scanning electron microscopy, small angle x ray scattering and N(2) sorption-desorption. The pore size and the solvent effects into luminescence dye encapsuled into mesoporous silica channels are observed in the visible absorption and emission spectra of rhodamine 6G. The intense photo luminescence band of rhodamine 6G dye is in 500 to 600 nm region. The observed shift of the absorption and emission bands can be assigned to the effect of the solvents dielectric constant and pore size of mesoporous silica.
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
Nickel nanoparticles into silica-carbon matrix composites were prepared by using the polymeric precursor method. The effects of the polyester type and the time of pyrolysis on the mesoporosity and nickel particle dispersion into non-aqueous amorphous silica-carbon matrix were investigated by thermogravimetric analysis, adsorption/desorption isotherms and TEM. A well-dispersed metallic phase could be only obtained by using ethylene glycol. Weightier polyesters affected the pyrolysis process due to a combination of more amounts of carbonaceous residues and delaying of pyrolysis process. The post-pyrolyzed composites were successfully cleaned at 200 degrees C for I h in oxygen atmosphere leading to an increase in the surface area and without the occurrence of carbon combustion or nickel nanoparticles oxidation. The matrix composites presented predominantly mesoporous with pore size well defined in 38 angstrom, mainly when tetraethylene glycol was used as polymerizing agent. (C) 2007 Elsevier B.V. All rights reserved.
Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41
Resumo:
Biodiesel has been obtained by esterification of palmitic acid with methanol, ethanol and isopropanol in the presence of Al-MCM-41 mesoporous molecular sieves with Si/Al ratios of 8.16 and 32. The catalytic acids were synthesized at room temperature and characterized by atomic absorption spectrometry (AAS), thermal analysis (TG/DTA), X-ray diffraction (XRD), nitrogen absorption (BET/BJH), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The reaction was carried out at 130 degrees C whilst stirring at 500 rpm, with an alcohol/acid molar ratio of 60 and 0.6 wt% catalyst for 2 h. The alcohol reactivity follows the order methanol > ethanol > isopropanol. The catalyst Al-MCM-41 with ratio Si/Al = 8 produced the largest conversion values for the alcohols studied. The data followed a rather satisfactory approximation to first-order kinetics. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)