994 resultados para Optical anisotropy
Resumo:
The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Phi) at the nodal points of the mesh. The experimentally measured flux (U-measured) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Phi) from U-measured(cal). In the first approach, the measurement data with a homogeneous phantom (U-measured(homo)) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (U-measured(hetero)) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) DOI: 10.1117/1.JBO.18.2.026023]
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and twodimensional (2-D) wavelength/time single-pulse-per-row (W/TSPR) codes are analyzed. The main advantage of using 2-D codes instead of one-dimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver is considered in the analysis. Using analytical model, we compute and compare packet-success probability for 1-D and 2-D codes in an O-CDMA network and the analysis shows improved performance with 2-D codes as compared to 1-D codes.
Resumo:
The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
When an electron is injected into liquid helium, it forces open a cavity that is free of helium atoms (an electron bubble). If the electron is in the ground 1S state, this bubble is spherical. By optical pumping it is possible to excite a significant fraction of the electron bubbles to the 1P state; the bubbles then lose spherical symmetry. We present calculations of the energies of photons that are needed to excite these 1P bubbles to higher energy states (1D and 2S) and the matrix elements for these transitions. Measurement of these transition energies would provide detailed information about the shape of the 1P bubbles.
Resumo:
The Wheeler-Feynman (WF) absorber theory of radiation though no more of interest in explaining self interaction of an electron, can be very useful in today's research in small scale optical systems. The significance of the WF absorber is the use of time-symmetrical solution of Maxwell's equations as opposed to only the retarded solution. The radiative coupling of emitters to nano wires in the near field and change in their lifetimes due to small mode volume enclosures have been elucidated with the retarded solutions before. These solutions have also been shown to agree with quantum electrodynamics, thus allowing for classical electromagnetic approaches in such problems. It is here assumed that the radiative coupling of the emitter with a body is in proportion to its contribution to the classical force of radiative reaction as derived in the WF absorber theory. Representing such nano structures as a partial WF absorber acting on the emitter makes the computations considerably easier than conventional electromagnetic solutions for full boundary conditions.
Resumo:
TiO2 and Al2O3 are commonly used materials in optical thin films in the visible and near‐infrared wavelength region due to their high transparency and good stability. In this work, TiO2 and Al2O3 single, and nano composite thin films with different compositions were deposited on glass and silicon substrates at room temperature using a sol‐gel spin coater. The optical properties like reflectance, transmittance and refractive index have been studied using Spectrophotometer, and structural properties using X‐Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).
Resumo:
alpha-Fe2O3 nanoparticles were synthesized by a low temperature solution combustion method. The structural, magnetic and luminescence properties were studied. Powder X-ray diffraction (PXRD) pattern of alpha-Fe2O3 exhibits pure rhombohedral structure. SEM micrographs reveal the dumbbell shaped particles. The EPR spectrum shows an intense resonance signal at g approximate to 5.61 corresponding to isolated Fe3+ ions situated in axially distorted sites, whereas the g approximate to 2.30 is due to Fe3+ ions coupled by exchange interaction. Raman studies show A(1g) (225 cm(-1)) and E-g (293 and 409 cm(-1)) phonon modes. The absorption at 300 nm results from the ligand to metal charge transfer transitions whereas the 540 nm peak is mainly due to the (6)A(1) + (6)A(1) —> T-4(1)(4G) + T-4(1)(4G) excitation of an Fe3+-Fe3+ pair. A prominent TL glow peak was observed at 140 C at heating rate of 5 degrees C s(-1). The trapping parameters namely activation energy (E), frequency factor (s) and order of kinetics (b) were evaluated and discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. Methods: The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. Results: The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. Conclusions: The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time. (C) 2013 American Association of Physicists in Medicine. http://dx.doi.org/10.1118/1.4792459]
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
The influence of microstructure and texture developed by different modes of hot cross-rolling on in-plane anisotropy (A (IP)) of yield strength, work hardening behavior, and anisotropy of Knoop hardness (KHN) yield locus has been investigated. The A (IP) and work hardening behavior are evaluated by tensile testing at 0 deg, 45 deg, and 90 deg to the rolling direction, while yield loci have been generated by directional KHN measurements. It has been observed that specimens especially in the peak-aged temper, in spite of having a strong, rotated Brass texture, show low A (IP). The results are discussed on the basis of Schmid factor analyses in conjunction with microstructural features, namely grain morphology and precipitation effects. For the specimen having a single-component texture, the yield strength variation as a function of orientation can be rationalized by the Schmid factor analysis of a perfectly textured material behaving as a quasi-single crystal. The work hardening behavior is significantly affected by the presence of solute in the matrix and the state of precipitation rather than texture, while yield loci derived from KHN measurements reiterate the low anisotropy of the materials. Theoretic yield loci calculated from the texture data using the visco-plastic self-consistent model and Hill's anisotropic equation are compared with that obtained experimentally.
Resumo:
Fine powders of beta-Ga2O3 nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase beta-Ga2O3 nanostructures were obtained by thermal treatment at 900 degrees C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor-acceptor gallium-oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.
Resumo:
The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.
Resumo:
Melting and freezing transitions in two dimensional (2D) systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems: the melting of 2D molecular solids is still largely unexplored. In order to understand the role of anisotropy as well as multiple energy and length scales present in molecular systems, here we report computer simulation studies of melting of 2D molecular systems. We computed a limited portion of the solid-liquid phase diagram. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram consisting of isotropic liquid and two crystalline phases-honeycomb and oblique. The nature of the transition depends on the relative strength of the anisotropic interaction and a strongly first order melting turns into a weakly first order transition on increasing the strength of the isotropic interaction. This crossover can be attributed to an increase in stiffness of the solid phase free energy minimum on increasing the strength of the anisotropic interaction. The defects involved in melting of molecular systems are quite different from those known for the atomic systems.