972 resultados para Oil pollution of rivers, harbors, etc


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper reports data on concentrations of organic compounds (organic carbon, lipids; aliphatic hydrocarbons, and polycyclic aromatic hydrocarbons) in snow, ice, and sub-ice waters from the mouth of the Severnaya Dvina River in March 2005-2007 and the Kandalaksha Gulf (Chupa Bay) in March 2004. It was established that organic compounds are accumulated in snow and the upper ice layer near Archangelsk city. Distribution of molecular markers indicates that pollutions were mainly caused by local fallouts. In the Chupa Bay organic compounds are concentrated in the lower ice layer; it is typical for Arctic snow-ice cover. High contents of organic compounds in the snow-ice cover of the White Sea are caused by pollution of air and water during the winter season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition of Zn, Cu, Cd, and Pb into solution is studied for experimental suspensions of coastal marine sediments with different degrees of pollution from the Amur Bay (Sea of Japan) over 30-70 days. Concentrations of dissolved metals were measured by a voltammetry method. Transition of Zn and Cd into solution was shown to be linearly dependent on initial pollution of sediments with these metals. Cadmium mobilization is due to gradual degradation of organic matter from sediments. Under degradation processes Zn quickly goes into solution during sedimentation and from silts, while in case of polluted sediments it is slowly mobilized during oxidation of sulfides. Behavior of Cu is complex because of binding of mobilized metal by dissolved organic compounds. Transition of lead into solution is negligible. Calculation of potential transition of metals from sediments into water on the basis of experimental data and its comparison with downward sedimentary flux showed that in the studied area secondary pollution of water by aerobic degradation of sediments is possible only for Cd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic fluctuations in global sea level during epochs of warm greenhouse climate have remained enigmatic, because absence or subordinate presence of polar ice during these periods precludes an explanation by glacio-eustatic forcing. An alternative concept suggests that the water-bearing potential of groundwater aquifers is equal to that of ice caps and that changes in the dynamic balance of aquifer charge versus discharge, as a function of the temperature-related intensity of the hydrological cycle, may have driven eustasy during warm climates. However, this idea has long been neglected for two reasons: 1) the large storage potential of subsurface aquifers was confused with the much smaller capacity of rivers and lakes and 2) empirical data were missing that document past variations in the hydrological cycle in relation to eustasy. In the present study we present the first empirical evidence for changes in precipitation, continental weathering intensity and evaporation that correlate with astronomically (long obliquity) forced sea-level cycles during the warmest period of the Cretaceous (Cenomanian-Turonian). We compare sequence-stratigraphic data with changes in the terrigenous mineral assemblage in a low-latitude marine sedimentary sequence from the equatorial humid belt at the South-Tethyan margin (Levant carbonate platform, Jordan), thereby avoiding uncertainties from land-ocean correlations. Our data indicate covariance between cycles in weathering and sea level: predominantly chemical weathering under wet climate conditions is reflected by dominance of weathering products (clays) in deposits that represent sea-level fall (aquifer charge > discharge). Conversely, preservation of weathering-sensitive minerals (feldspars, epidote and pyroxenes) in transgressive sediments reflects decreased continental weathering due to dryer climate (aquifer discharge > charge). Based on our results we suggest that aquifer-eustasy represents a viable alternative to glacio-eustasy as a driver of cyclic 3rd-order sea-level fluctuations during the middle Cretaceous greenhouse climate, and it may have been a pervasive process throughout Earth history.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mouth area of the North (Severnaya) Dvina River is characterized by a high concentrations of methane in water (from 1.0 to 165.4 µl/l) and bottom sediments (from 14 to 65000 µl/kg), being quite comparable to productive mouth areas of rivers from the temperate zone. Maximum methane concentrations in water and sediments were registered in the delta in segments of channels and branches with low rates of tidal and runoff currents, where domestic and industrial wastewaters are supplied. In the riverine and marine water mixing zone with its upper boundary, locating far into the delta and moving depending on a phase of the tidal cycle, decrease of methane concentration with salinity increase was observed. The prevailing role in formation of the methane concentration level in water of the mouth area pertains to bottom sediments, which is indicated by close correlation between gas concentrations in these two media. Existence of periodicity in variations of methane concentration in river water downstream caused by tidal effects was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical composition of the upper layer of sediments (0-1 cm) in the Kolvits and Knazhaya inlets, and also in the deep-water part of the Kandalaksha Bay is considered. It is shown that silts are richer in Fe, TOC, and heavy metals, than sands. The highest concentration of these elements is found in sediments under mixing zones of riverine and sea waters. Correlations of P, Zn, Cd, and Cu with iron are high, and correlations of Pb and Cu with organic carbon are also high. Very high concentration of Pb in the Kandalaksha Bay indicate technogenic pollution of sediments. Lignin makes significant contribution to formation of organic matter in the sediments. Composition of lignin in bottom sediments of the Kandalaksha Bay is defined by composition of lignin in soils and aerosols. Vanillin and syringyl structures prevail in molecular composition of lignin in bottom sediments. Their sources are coniferous vegetations, soils, and mosses. Ratios of certain types of phenol compounds indicate pollution of the upper layer of sediments by technogenic lignin. Lead and copper correlate well with this technogenic lignin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of the palynofacies and sporomorph thermal alteration indices (TAI) of sediments from Ocean Drilling Program (ODP) Sites 959 to 962 in the Cote d'Ivoire-Ghana Transform Margin, West Africa were undertaken to (1) determine the source and depositional conditions of the organic matter in the sediments, (2) refine a paleobathymetric curve derived from other data for Site 959, which drilled the most continuous sedimentary sequence from Pleistocene to Albian and (3) interpret the paleothermal history of the area. Twelve types of dispersed organic matter were identified: amorphous organic matter (AOM), marine palynomorphs, algae, resins, black debris, yellow-brown fragments, black-brown fragments, cuticles, plant tissue, wood, sporomorphs and fungi, The relative abundances of these organic matter components at each site were analyzed using cluster analysis, resulting in the identification of seven palynofacies assemblages at Site 959, five each at sites 960 and 961, and four at Site 962. Amorphous organic matter (which is chiefly marine derived), black debris and wood have played the most significant role in defining palynofacies assemblages. The palynofacies assemblages show some correlation with lithologic units, sediment sources and depositional environments. Previous palynofacies studies in passive margins have demonstrated that changes in the ratio of AOM to terrestrial organic matter are related primarily to proximal-distal positions of depositional environments relative to the shoreline. However, this assumption does not always hold true for a transform margin where tectonic factors play an important role in the organic matter distribution, at least in the early stages of evolution. Lithofacies, CCD paleodepths for the North Atlantic, trace fossil association, benthic foraminifera and palynofacies data were the criteria used for reconstructing a paleobathymetric curve for Site 959. A cyclicity in the organic matter distribution of the Upper Miocene to Lower Pliocene pelagic sediments could be related to fluctuations in productivity of biosiliceous and calcareous organisms, and sedimentation rates. A drastic increase in the amount of AOM and a decrease in black debris and wood in the carbonate and clastic rocks (Lithologic Unit IV) overlying the tectonized Albian sediments (Lithologic Unit V) at Sites 959 and 960 coincide with the presence of an unconformity. Qualitative color analysis of palynomorphs was undertaken for all sites, although the main focus was on Site 959 where detailed organic geochemical data were available. At Site 959, TAI values indicate an immature stage of organic maturation (<2) down to the black claystones of Lithologic Unit III at about 918.47 mbsf. Below this, samples show an increase with depth to a moderately mature stage (>2 except for the claystone samples between 1012.52 and 1036.5 mbsf, and one limestone sample at 1043.4 mbsf), reaching peak levels of 2.58 to 3.0 in the tectonized Albian sediments below the unconformity. These TAI values show a positive correlation with the Tma x values derived from Rock-Eval pyrolysis data. The highest values recorded in the basal tectonized units at all the sites (Sites 960-962 have mean values between 2.25 and 3.13) may be related to high heat flow during the intracontinental to syntransform basin stage in the region.