998 resultados para Neurotoxic action
Resumo:
The corrosion of reinforcement in bridge deck slabs has been the cause of major deterioration and high costs in repair and maintenance.This problem could be overcome by reducing the amount of reinforcement and/or altering the location.This is possible because, in addition to the strength provided by the reinforcement, bridge deck slabs have an inherent strength due to the in-plane arching forces set up as a result of restraint provided by the slab boundary conditions. This is known as arching action or Compressive Membrane Action (CMA). It has been recognised for some time that laterally restrained slabs exhibit strengths far in excess of those predicted by most design codes but the phenomenon has not been recognised by the majority of bridge design engineers. This paper presents the results of laboratory tests on fifteen reinforced concrete slab strips typical of a bridge deck slab and compares them to predicted strengths using the current codes and CMA theory. The tests showed that the strength of laterally restrained slabs is sensitive to both the degree of external lateral restraint and the concrete compressive strength.The tests particularly highlighted the benefits in strength obtained from very high strength concrete slabs. The theory extends the existing knowledge of CMA in slabs with concrete compressive strengths up to 100 N/mm[2] and promotes more economical and durable bridge deck construction by utilising the benefits of high strength concrete.
Resumo:
The deterioration of infrastructure, such as bridges, has been one of the major challenges facing both the designers and the owners of such utilities. Sustainable development and a climate of increasing commercialism has led to a requirement for more accurate means of structural analysis. Bridge assessment is one area where this is particularly relevant. It has been known for some time that bridge deck slabs have inherent enhanced strength due to the presence of arching or compressive membrane action (CMA) but only in recent years has there been some acceptance of a rational treatment of this phenomenon for design and assessment purposes. To use the benefits of arching action, this paper presents the results of tests carried out on a reinforced-concrete beam and slab bridge in Northern Ireland that incorporated novel reinforcement type and position. The research was aimed at extending previous laboratory tests on 1/3scale bridge deck edge panels. The measured crack widths and deflections have been compared with the current code requirements.
Resumo:
.
Resumo:
Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide [GIP]) is an important incretin hormone secreted by endocrine K-cells in response to nutrient ingestion. In this study, we investigated the effects of chemical ablation of GIP receptor (GIP-R) action on aspects of obesity-related diabetes using a stable and specific GIP-R antagonist, (Pro3)GIP. Young adult ob/ob mice received once-daily intraperitoneal injections of saline vehicle or (Pro3)GIP over an 11-day period. Nonfasting plasma glucose levels and the overall glycemic excursion (area under the curve) to a glucose load were significantly reduced (1.6-fold; P <0.05) in (Pro3)GIP-treated mice compared with controls. GIP-R ablation also significantly lowered overall plasma glucose (1.4-fold; P <0.05) and insulin (1.5-fold; P <0.05) responses to feeding. These changes were associated with significantly enhanced (1.6-fold; P <0.05) insulin sensitivity in the (Pro3)GIP-treated group. Daily injection of (Pro3)GIP reduced pancreatic insulin content (1.3-fold; P <0.05) and partially corrected the obesity-related islet hypertrophy and ß-cell hyperplasia of ob/ob mice. These comprehensive beneficial effects of (Pro3)GIP were reversed 9 days after cessation of treatment and were independent of food intake and body weight, which were unchanged. These studies highlight a role for GIP in obesity-related glucose intolerance and emphasize the potential of specific GIP-R antagonists as a new class of drugs for the alleviation of insulin resistance and treatment of type 2 diabetes.
Resumo:
Polymerase chain reaction (PCR) assessment of clonal immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements is an important diagnostic tool in mature B-cell neoplasms. However, lack of standardized PCR protocols resulting in a high level of false negativity has hampered comparability of data in previous clonality studies. In order to address these problems, 22 European laboratories investigated the Ig/TCR rearrangement patterns as well as t(14;18) and t(11;14) translocations of 369 B-cell malignancies belonging to five WHO-defined entities using the standardized BIOMED-2 multiplex PCR tubes accompanied by international pathology panel review. B-cell clonality was detected by combined use of the IGH and IGK multiplex PCR assays in all 260 definitive cases of B-cell chronic lymphocytic leukemia (n¼56), mantle cell lymphoma (n¼54), marginal zone lymphoma (n¼41) and follicular lymphoma (n¼109). Two of 109 cases of diffuse large B-cell lymphoma showed no detectable clonal marker. The use of these techniques to assign cell lineage should be treated with caution as additional clonal TCR gene rearrangements were frequently detected in all disease categories. Our study indicates that the BIOMED-2 multiplex PCR assays provide a powerful strategy for clonality assessment in B-cell malignancies resulting in high Ig clonality detection rates particularly when IGH and IGK strategies are combined.
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.