955 resultados para NOx adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1-2.1 m2/g, except in one case where as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å All the specimens had similar pore size distributions, with a small peak centered around 50 Å These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ∼10-2 g. Some volcanic implications of this study are discussed. © Springer-Verlag 2004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed for the first time a molecular dynamics simulation of the adsorption of gas-phase Ag particles on a graphite substrate to provide an insight into the results of a comprehensive STM-based experiment on this system. Both pair-wise and many-body interatomic potentials have been employed, and a Morse-type Ag–C potential was specifically constructed to describe the interactions at the interface. Our simulation has successfully reproduced a significant portion of the experimental findings. We have also observed the intercalation of silver in graphite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of a C60 monolayer on a graphite substrate was modelled via molecular dynamics simulation covering a significant period of 160 picoseconds. The final configuration of C60s agrees closely with that observed in a scanning tunnelling microscopy (STM) experiment. Clusters of adsorbed molecules were then selected and their STM-like images were computed via the Keldysh Green function method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation relates to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specifically formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. PACS numbers: 02.60.Cb, 07.05.Tp, 68.55.-a, 81.05.Tp

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper NOx emissions modelling for real-time operation and control of a 200 MWe coal-fired power generation plant is studied. Three model types are compared. For the first model the fundamentals governing the NOx formation mechanisms and a system identification technique are used to develop a grey-box model. Then a linear AutoRegressive model with eXogenous inputs (ARX) model and a non-linear ARX model (NARX) are built. Operation plant data is used for modelling and validation. Model cross-validation tests show that the developed grey-box model is able to consistently produce better overall long-term prediction performance than the other two models.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coloured effluents from textile industries are a problem in many rivers and waterways. Prediction of adsorption capacities of dyes by adsorbents is important in design considerations. The sorption of three basic dyes, namely Basic Blue 3, Basic Yellow 21 and Basic Red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single component systems. Equilibrium was achieved after twenty-one days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis has been undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters and hence obtain the best isotherm and isotherm parameters which describe the adsorption process. The linear transform model provided the highest R2 regression coefficient with the Redlich-Peterson model. The Redlich-Peterson model also yielded the best fit to experimental data for all three dyes using the non-linear error functions. An extended Langmuir model has been used to predict the isotherm data for the binary systems using the single component data. The correlation between theoretical and experimental data had only limited success due to competitive and interactive effects between the dyes and the dye-surface interactions.