980 resultados para NEGATIVE-ION MODE
Resumo:
This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.
Resumo:
The interlaminar fracture toughness in pure mode II (GIIc) of a Carbon-Fibre Reinforced Plastic (CFRP) composite is characterized experimentally and numerically in this work, using the End-Notched Flexure (ENF) fracture characterization test. The value of GIIc was extracted by a new data reduction scheme avoiding the crack length measurement, named Compliance-Based Beam Method (CBBM). This method eliminates the crack measurement errors, which can be non-negligible, and reflect on the accuracy of the fracture energy calculations. Moreover, it accounts for the Fracture Process Zone (FPZ) effects. A numerical study using the Finite Element Method (FEM) and a triangular cohesive damage model, implemented within interface finite elements and based on the indirect use of Fracture Mechanics, was performed to evaluate the suitability of the CBBM to obtain GIIc. This was performed comparing the input values of GIIc in the numerical models with the ones resulting from the application of the CBBM to the numerical load-displacement (P-) curve. In this numerical study, the Compliance Calibration Method (CCM) was also used to extract GIIc, for comparison purposes.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
The mode III interlaminar fracture of carbon/epoxy laminates was evaluated with the edge crack torsion (ECT) test. Three-dimensional finite element analyses were performed in order to select two specimen geometries and an experimental data reduction scheme. Test results showed considerable non-linearity before the maximum load point and a significant R-curve effect. These features prevented an accurate definition of the initiation point. Nevertheless, analyses of non-linearity zones showed two likely initiation points corresponding to GIIIc values between 850 and 1100 J/m2 for both specimen geometries. Although any of these values is realistic, the range is too broad, thus showing the limitations of the ECT test and the need for further research.
Resumo:
Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins), M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect) and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect). The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro
Resumo:
Purpose: This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose for pelvis using automatic exposure control (AEC) and non-AEC in a computed radiography (CR) system. Methods and Materials: To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60-120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the 2 AFC visual grading software. PCXMC software was used to estimate the effective dose. Results: A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p> 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. Effective dose results show a statistical significant decrease (p=0.000) on the 75th quartile from 0.3 mSv at 60 kVp to 0.1 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion: No significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant effective dose reduction is observed.
Resumo:
Past studies found three types of infant coping behaviour during Face-to-Face Still-Face paradigm (FFSF): a Positive Other-Directed Coping; a Negative Other-Directed Coping and a Self-Directed Coping. In the present study, we investigated whether those types of coping styles are predicted by: infants’ physiological responses; maternal representations of their infant’s temperament; maternal interactive behaviour in free play; and infant birth and medical status. The sample consisted of 46, healthy, prematurely born infants and their mothers. At one month, infant heart rate was collected in basal. At three months old (corrected age), infant heart-rate was registered during FFSF episodes. Mothers described their infants’ temperament using a validated Portuguese temperament scale, at infants three months of corrected age. As well, maternal interactive behaviour was evaluated during a free play situation using CARE-Index. Our findings indicate that positive coping behaviours were correlated with gestational birth weight, heart rate (HR), gestational age, and maternal sensitivity in free play. Gestational age and maternal sensitivity predicted Positive Other-Direct Coping behaviours. Moreover, Positive Other-Direct coping was negatively correlated with HR during Still-Face Episode. Self-directed behaviours were correlated with HR during Still-Face Episode and Recover Episode and with maternal controlling/intrusive behaviour. However, only maternal behaviour predicted Self-direct coping. Early social responses seem to be affected by infants’ birth status and by maternal interactive behaviour. Therefore, internal and external factors together contribute to infant ability to cope and to re-engage after stressful social events.
Resumo:
The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
The use of a solar photovoltaic (PV) panel simulator can be a valued tool for the design and evaluation of the several components of a photovoltaic system. This simulator is based on power electronic converter controlled in such a way that will behave as a PV panel. Thus, in this paper a PV panel simulator based on a two quadrant DC/DC power converter is proposed. This topology will allow to achieve fast responses, like suddenly changes in the irradiation and temperature. To control the power converter it will be used a fast and robust sliding mode controller. Therefore, with the proposed system I-V curve simulation of a PV panel is obtained. Experimental results from a laboratory prototype are presented in order to confirm the theoretical operation.
Resumo:
Summary form only given. Bacterial infections and the fight against them have been one of the major concerns of mankind since the dawn of time. During the `golden years' of antibiotic discovery, during the 1940-90s, it was thought that the war against infectious diseases had been won. However currently, due to the drug resistance increase, associated with the inefficiency of discovering new antibiotic classes, infectious diseases are again a major public health concern. A potential alternative to antibiotic treatments may be the antimicrobial photodynamic inactivation (PDI) therapy. To date no indication of antimicrobial PDI resistance development has been reported. However the PDI protocol depends on the bacteria species [1], and in some cases on the bacteria strains, for instance Staphylococcus aureus [2]. Therefore the development of PDI monitoring techniques for diverse bacteria strains is critical in pursuing further understanding of such promising alternative therapy. The present works aims to evaluate Fourier-Transformed-Infra-Red (FT-IR) spectroscopy to monitor the PDI of two model bacteria, a gram-negative (Escherichia coli) and a gram-positive (S. aureus) bacteria. For that a high-throughput FTIR spectroscopic method was implemented as generally described in Scholz et al. [3], using short incubation periods and microliter quantities of the incubation mixture containing the bacteria and the PDI-drug model the known bactericidal tetracationic porphyrin 5,10,15,20-tetrakis (4-N, N, Ntrimethylammoniumphenyl)-porphyrin p-tosylate (TTAP4+). In both bacteria models it was possible to detect, by FTIR-spectroscopy, the drugs effect on the cellular composition either directly on the spectra or on score plots of principal component analysis. Furthermore the technique enabled to infer the effect of PDI on the major cellular biomolecules and metabolic status, for example the turn-over metabolism. In summary bacteria PDI was monitored in an economic, rapid (in minutes- , high-throughput (using microplates with 96 wells) and highly sensitive mode resourcing to FTIR spectroscopy, which could serve has a technological basis for the evaluation of antimicrobial PDI therapies efficiency.
Resumo:
Trypanosoma cruzi, the causative agent of Chagasdisease assumes two distinct forms in vertebrate hosts: circulating trypomastigote and tissular amastigote. This latter form infects predominantly the myocardium, smooth and skeletal muscle, and central nervous system. The present work describes for the first time the detection of amastigote forms of T. cruzi in the renal parenchyma of a kidney graft recipient one month after transplantation. The patient was serologically negative for Chagasdisease and received no blood transfusion prior to transplant. The cadaver donor was from an endemic area for Chagasdisease. The recipient developed the acute form of the disease with detection of amastigote forms of T. cruzi in the renal allograft biopsy and circulating trypomastigote forms. The present report demonstrates that T. cruzi can infect the renal parenchyma. This mode of transmission warrants in endemic areas of Chagasdisease
Resumo:
Active infection by T. gondii was evaluated by immunoassay for soluble SAG-1 (p30), the major surface antigen from T. gondii, specific antibodies and immune complexes in human cerebrospinal fluid (CSF) samples. A total of 263 samples of CSF were collected from hospitalized patients presenting neurological disorders and analyzed for antibodies to HIV. Patients were divided into two groups: HIV positive (n = 96) or HIV negative (n =167). The results of the assays showed that 45% of all samples were positive for soluble SAG-1. Toxoplasma Ag/Ab immune complexes were detected in 19% of the CSF samples and 62% were positive for T. gondii- specific IgG. A combination of these assays in the presence of clinical findings consistent with active Toxoplasma infection may predict the presence of toxoplasmic encephalitis. Moreover, detection of soluble SAG-1 in the CSF of these individuals appears consistent with active infection.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Computational Logic