926 resultados para Model-Data Integration and Data Assimilation
Development of a multicellular co-culture model of normal and cystic fibrosis human airways in vitro
Resumo:
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians and arises due to mutations in a chloride channel, called cystic fibrosis transmembrane conductance regulator. A hallmark of this disease is the chronic bacterial infection of the airways, which is usually, associated with pathogens such as Pseudomonas aeruginosa, S. aureus and recently becoming more prominent, B. cepacia. The excessive inflammatory response, which leads to irreversible lung damage, will in the long term lead to mortality of the patient at around the age of 40 years. Understanding the pathogenesis of CF currently relies on animal models, such as those employing genetically-modified mice, and on single cell culture models, which are grown either as polarised or non-polarised epithelium in vitro. Whilst these approaches partially enable the study of disease progression in CF, both types of models have inherent limitations. The overall aim of this thesis was to establish a multicellular co-culture model of normal and CF human airways in vitro, which helps to partially overcome these limitations and permits analysis of cell-to-cell communication in the airways. These models could then be used to examine the co-ordinated response of the airways to infection with relevant pathogens in order to validate this approach over animals/single cell models. Therefore epithelial cell lines of non-CF and CF background were employed in a co-culture model together with human pulmonary fibroblasts. Co-cultures were grown on collagen-coated permeable supports at air-liquid interface to promote epithelial cell differentiation. The models were characterised and essential features for investigating CF infections and inflammatory responses were investigated and analysed. A pseudostratified like epithelial cell layer was established at air liquid interface (ALI) of mono-and co-cultures and cell layer integrity was verified by tight junction (TJ) staining and transepithelial resistance measurements (TER). Mono- and co-cultures were also found to secrete the airway mucin MUC5AC. Influence of bacterial infections was found to be most challenging when intact S. aureus, B. cepacia and P. aeruginosa were used. CF mono- and co-cultures were found to mimic the hyperinflammatory state found in CF, which was confirmed by analysing IL-8 secretions of these models. These co-culture models will help to elucidate the role fibroblasts play in the inflammatory response to bacteria and will provide a useful testing platform to further investigate the dysregulated airway responses seen in CF.
Resumo:
This paper concerns the problem of agent trust in an electronic market place. We maintain that agent trust involves making decisions under uncertainty and therefore the phenomenon should be modelled probabilistically. We therefore propose a probabilistic framework that models agent interactions as a Hidden Markov Model (HMM). The observations of the HMM are the interaction outcomes and the hidden state is the underlying probability of a good outcome. The task of deciding whether to interact with another agent reduces to probabilistic inference of the current state of that agent given all previous interaction outcomes. The model is extended to include a probabilistic reputation system which involves agents gathering opinions about other agents and fusing them with their own beliefs. Our system is fully probabilistic and hence delivers the following improvements with respect to previous work: (a) the model assumptions are faithfully translated into algorithms; our system is optimal under those assumptions, (b) It can account for agents whose behaviour is not static with time (c) it can estimate the rate with which an agent's behaviour changes. The system is shown to significantly outperform previous state-of-the-art methods in several numerical experiments. Copyright © 2010, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
Resumo:
Visual perception begins by dissecting the retinal image into millions of small patches for local analyses by local receptive fields. However, image structures extend well beyond these receptive fields and so further processes must be involved in sewing the image fragments back together to derive representations of higher order (more global) structures. To investigate the integration process, we also need to understand the opposite process of suppression. To investigate both processes together, we measured triplets of dipper functions for targets and pedestals involving interdigitated stimulus pairs (A, B). Previous work has shown that summation and suppression operate over the full contrast range for the domains of ocularity and space. Here, we extend that work to include orientation and time domains. Temporal stimuli were 15-Hz counter-phase sine-wave gratings, where A and B were the positive and negative phases of the oscillation, respectively. For orientation, we used orthogonally oriented contrast patches (A, B) whose sum was an isotropic difference of Gaussians. Results from all four domains could be understood within a common framework in which summation operates separately within the numerator and denominator of a contrast gain control equation. This simple arrangement of summation and counter-suppression achieves integration of various stimulus attributes without distorting the underlying contrast code.
Resumo:
Prior research linking demographic (e.g., age, ethnicity/race, gender, and tenure) and underlying psychological (e.g., personality, attitudes, and values) dissimilarity variables to individual group member's work-related outcomes produced mixed and contradictory results. To account for these findings, this study develops a contingency framework and tests it using meta-analytic and structural equation modelling techniques. In line with this framework, results showed different effects of surface-level (i.e., demographic) dissimilarity and deep-level (i.e., underlying psychological) dissimilarity on social integration, and ultimately on individual effectiveness related outcomes (i.e., turnover, task, and contextual performance). Specifically, surface-level dissimilarity had a negative effect on social integration under low but not under high team interdependence. In return, social integration fully mediated the negative relationship between surface-level dissimilarity and individual effectiveness related outcomes under low interdependence. In contrast, deep-level dissimilarity had a negative effect on social integration, which was stronger under high and weaker under low team interdependence. Contrary to our predictions, social integration did not mediate the negative relationship between deep-level dissimilarity and individual effectiveness related outcomes but suppressed positive direct effects of deep-level dissimilarity on individual effectiveness related outcomes. Possible explanations for these counterintuitive findings are discussed. © 2011 The British Psychological Society.
Resumo:
This paper presents a causal explanation of formative variables that unpacks and clarifies the generally accepted idea that formative indicators are ‘causes’ of the focal formative variable. In doing this, we explore the recent paper by Diamantopoulos and Temme (AMS Review, 3(3), 160-171, 2013) and show that the latter misunderstand the stance of Lee, Cadogan, and Chamberlain (AMS Review, 3(1), 3-17, 2013; see also Cadogan, Lee, and Chamberlain, AMS Review, 3(1), 38-49, 2013). By drawing on the multiple ways that one can interpret the idea of causality within the MIMIC model, we then demonstrate how the continued defense of the MIMIC model as a tool to validate formative indicators and to identify formative variables in structural models is misguided. We also present unambiguous recommendations on how formative variables can be modelled in lieu of the formative MIMIC model.
Resumo:
This thesis studies the links between language, migration and integration in the context of the 'new migrant' group of Latin Americans in London. It reviews the many ways in which language impacts the integration processes of migrants by influencing people's access to jobs, services, social contacts and information. By focusing on migrants' experiences this research also investigates the ways in which language and identity articulate, as well as the affective variables that are at play in the acquisition of the local language. With a large sector trapped in a cycle of poor command of English and labour market disadvantage, many Latin Americans experience exclusion and poverty. In reaction to this, a sector of the community is campaigning for ethnic minority recognition. This work reviews the debates for recognition and the strategy of organising around ethnicity, paying special attention to the role language plays in the process. The study is based on over two and half years of qualitative research, which included interviews, surveys, and long-term participant observation within a community organisation and a recognition campaign. Its interdisciplinary perspective allows the recognition of both the intimate links between language and identity, as well as the social and structural forces that influence migrants' linguistic integration. It unveils the practical and symbolic value that the mother tongue has for Latin American migrants and provides a broader account of their experiences. This research calls attention to the need for a more comprehensive approach to the study of language and migration in order to acknowledge the affective and social factors involved in the linguistic practices of migrants. By studying the community's struggles for recognition, this work evidences both the importance of visibility for minority groups in London and the intrinsic methodological limitations of monitoring through ethnic categorisation.
Resumo:
An important aspect of speech perception is the ability to group or select formants using cues in the acoustic source characteristics-for example, fundamental frequency (F0) differences between formants promote their segregation. This study explored the role of more radical differences in source characteristics. Three-formant (F1+F2+F3) synthetic speech analogues were derived from natural sentences. In Experiment 1, F1+F3 were generated by passing a harmonic glottal source (F0 = 140 Hz) through second-order resonators (H1+H3); in Experiment 2, F1+F3 were tonal (sine-wave) analogues (T1+T3). F2 could take either form (H2 or T2). In some conditions, the target formants were presented alone, either monaurally or dichotically (left ear = F1+F3; right ear = F2). In others, they were accompanied by a competitor for F2 (F1+F2C+F3; F2), which listeners must reject to optimize recognition. Competitors (H2C or T2C) were created using the time-reversed frequency and amplitude contours of F2. Dichotic presentation of F2 and F2C ensured that the impact of the competitor arose primarily through informational masking. In the absence of F2C, the effect of a source mismatch between F1+F3 and F2 was relatively modest. When F2C was present, intelligibility was lowest when F2 was tonal and F2C was harmonic, irrespective of which type matched F1+F3. This finding suggests that source type and context, rather than similarity, govern the phonetic contribution of a formant. It is proposed that wideband harmonic analogues are more effective informational maskers than narrowband tonal analogues, and so become dominant in across-frequency integration of phonetic information when placed in competition.
Resumo:
Mathematics Subject Classification: 26A33, 33C60, 44A15
Resumo:
Animal models of acquired epilepsies aim to provide researchers with tools for use in understanding the processes underlying the acquisition, development and establishment of the disorder. Typically, following a systemic or local insult, vulnerable brain regions undergo a process leading to the development, over time, of spontaneous recurrent seizures. Many such models make use of a period of intense seizure activity or status epilepticus, and this may be associated with high mortality and/or global damage to large areas of the brain. These undesirable elements have driven improvements in the design of chronic epilepsy models, for example the lithium-pilocarpine epileptogenesis model. Here, we present an optimised model of chronic epilepsy that reduces mortality to 1% whilst retaining features of high epileptogenicity and development of spontaneous seizures. Using local field potential recordings from hippocampus in vitro as a probe, we show that the model does not result in significant loss of neuronal network function in area CA3 and, instead, subtle alterations in network dynamics appear during a process of epileptogenesis, which eventually leads to a chronic seizure state. The model’s features of very low mortality and high morbidity in the absence of global neuronal damage offer the chance to explore the processes underlying epileptogenesis in detail, in a population of animals not defined by their resistance to seizures, whilst acknowledging and being driven by the 3Rs (Replacement, Refinement and Reduction of animal use in scientific procedures) principles.
Resumo:
A model was tested to examine relationships among leadership behaviors, team diversity, and team process measures with team performance and satisfaction at both the team and leader-member levels of analysis. Relationships between leadership behavior and team demographic and cognitive diversity were hypothesized to have both direct effects on organizational outcomes as well as indirect effects through team processes. Leader member differences were investigated to determine the effects of leader-member diversity leader-member exchange quality, individual effectiveness and satisfaction.^ Leadership had little direct effect on team performance, but several strong positive indirect effects through team processes. Demographic Diversity had no impact on team processes, directly impacted only one performance measure, and moderated the leadership to team process relationship.^ Cognitive Diversity had a number of direct and indirect effects on team performance, the net effects uniformly positive, and did not moderate the leadership to team process relationship.^ In sum, the team model suggests a complex combination of leadership behaviors positively impacting team processes, demographic diversity having little impact on team process or performance, cognitive diversity having a positive net impact impact, and team processes having mixed effects on team outcomes.^ At the leader-member level, leadership behaviors were a strong predictor of Leader-Member Exchange (LMX) quality. Leader-member demographic and cognitive dissimilarity were each predictors of LMX quality, but failed to moderate the leader behavior to LMX quality relationship. LMX quality was strongly and positively related to self reported effectiveness and satisfaction.^ The study makes several contributions to the literature. First, it explicitly links leadership and team diversity. Second, demographic and cognitive diversity are conceptualized as distinct and multi-faceted constructs. Third, a methodology for creating an index of categorical demographic and interval cognitive measures is provided so that diversity can be measured in a holistic conjoint fashion. Fourth, the study simultaneously investigates the impact of diversity at the team and leader-member levels of analyses. Fifth, insights into the moderating impact of different forms of team diversity on the leadership to team process relationship are provided. Sixth, this study incorporates a wide range of objective and independent measures to provide a 360$\sp\circ$ assessment of team performance. ^
Resumo:
The study explored when, under what conditions, and to what extent did European integration, particularly the European Union’s requirement for democratic conditionality, contribute to democratic consolidation in Spain, Poland, and Turkey? On the basis of a four-part definition, the dissertation examined the democratizing impact of European integration process on each of the following four components of consolidation: (i) holding of fair, free and competitive elections, (ii) protection of fundamental rights, including human and minority rights, (iii) high prospects of regime survival and civilian control of the military, and (iv) legitimacy, elite consensus, and stateness. To assess the relative significance of EU’s democratizing leverage, the thesis also examined domestic and non-EU international dynamics of democratic consolidation in the three countries. By employing two qualitative methods (case study and process-tracing), the study focused on three specific time frames: 1977–1986 for Spain, 1994–2004 for Poland, and 1999–present for Turkey. In addition to official documents, newspapers, and secondary sources, face-to-face interviews made with politicians, academics, experts, bureaucrats, and journalists in the three countries were utilized. The thesis generated several conclusions. First of all, the EU’s democratizing impact is not uniform across different components of democratic consolidation. Moreover, the EU’s democratizing leverage in Spain, Poland, and Turkey involved variations over time for three major reasons: (i) the changing nature of EU’s democratic conditionality over time (ii) varying levels of the EU’s credible commitment to the candidate country’s prospect for membership, and (iii) domestic dynamics in the candidate countries. Furthermore, the European integration process favors democratic consolidation but its magnitude is shaped by the candidate country’s prospect for EU membership and domestic factors in the candidate country. Finally, the study involves a major policy implication for the European Union: unless the EU provides a clear prospect for membership, its democratizing leverage will be limited in the candidate countries.
Resumo:
The role of source properties in across-formant integration was explored using three-formant (F1+F2+F3) analogues of natural sentences (targets). In experiment 1, F1+F3 were harmonic analogues (H1+H3) generated using a monotonous buzz source and second-order resonators; in experiment 2, F1+F3 were tonal analogues (T1+T3). F2 could take either form (H2 or T2). Target formants were always presented monaurally; the receiving ear was assigned randomly on each trial. In some conditions, only the target was present; in others, a competitor for F2 (F2C) was presented contralaterally. Buzz-excited or tonal competitors were created using the time-reversed frequency and amplitude contours of F2. Listeners must reject F2C to optimize keyword recognition. Whether or not a competitor was present, there was no effect of source mismatch between F1+F3 and F2. The impact of adding F2C was modest when it was tonal but large when it was harmonic, irrespective of whether F2C matched F1+F3. This pattern was maintained when harmonic and tonal counterparts were loudness-matched (experiment 3). Source type and competition, rather than acoustic similarity, governed the phonetic contribution of a formant. Contrary to earlier research using dichotic targets, requiring across-ear integration to optimize intelligibility, H2C was an equally effective informational masker for H2 as for T2.
Resumo:
Integrating information from multiple sources is a crucial function of the brain. Examples of such integration include multiple stimuli of different modalties, such as visual and auditory, multiple stimuli of the same modality, such as auditory and auditory, and integrating stimuli from the sensory organs (i.e. ears) with stimuli delivered from brain-machine interfaces.
The overall aim of this body of work is to empirically examine stimulus integration in these three domains to inform our broader understanding of how and when the brain combines information from multiple sources.
First, I examine visually-guided auditory, a problem with implications for the general problem in learning of how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3-1.7 degrees, or 22-28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.
My next line of research examines how electrical stimulation of the inferior colliculus influences perception of sounds in a nonhuman primate. The central nucleus of the inferior colliculus is the major ascending relay of auditory information before it reaches the forebrain, and thus an ideal target for understanding low-level information processing prior to the forebrain, as almost all auditory signals pass through the central nucleus of the inferior colliculus before reaching the forebrain. Thus, the inferior colliculus is the ideal structure to examine to understand the format of the inputs into the forebrain and, by extension, the processing of auditory scenes that occurs in the brainstem. Therefore, the inferior colliculus was an attractive target for understanding stimulus integration in the ascending auditory pathway.
Moreover, understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5-80 µA, 100-300 Hz, n=172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals’ judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site in comparison to the reference frequency employed in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site’s response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated and provide a greater range of evoked percepts.
My next line of research employs a frequency-tagging approach to examine the extent to which multiple sound sources are combined (or segregated) in the nonhuman primate inferior colliculus. In the single-sound case, most inferior colliculus neurons respond and entrain to sounds in a very broad region of space, and many are entirely spatially insensitive, so it is unknown how the neurons will respond to a situation with more than one sound. I use multiple AM stimuli of different frequencies, which the inferior colliculus represents using a spike timing code. This allows me to measure spike timing in the inferior colliculus to determine which sound source is responsible for neural activity in an auditory scene containing multiple sounds. Using this approach, I find that the same neurons that are tuned to broad regions of space in the single sound condition become dramatically more selective in the dual sound condition, preferentially entraining spikes to stimuli from a smaller region of space. I will examine the possibility that there may be a conceptual linkage between this finding and the finding of receptive field shifts in the visual system.
In chapter 5, I will comment on these findings more generally, compare them to existing theoretical models, and discuss what these results tell us about processing in the central nervous system in a multi-stimulus situation. My results suggest that the brain is flexible in its processing and can adapt its integration schema to fit the available cues and the demands of the task.