716 resultados para Mild cognitive impairment, Dementia, Depression, n-3 Fatty acids, EPA, DHA
Resumo:
A thermodynamic model was developed for modeling the solubilities of fatty acids in supercritical carbon dioxide. The model combines the Peng-Robinson equation of state (EOS) with the two parameter van der Waal's mixing rules. The model is applied to predict the solubilities of various fatty acids. The two adjustable interaction parameters in the model are found to vary linearly with the chain length of the fatty acids. Thus this model can be used to predict the solubilities of various fatty acids in supercritical carbon dioxide. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
[EN]A comprehensive evaluation of the fatty acid composition of subcutaneous adipose tissue from beef cattle produced in western Canada was undertaken to determine if the current Canadian grading system is able to distinguish classes of animals with value added potential due to their fatty acid composition. Grades included youthful Canadian Yield Grade 1 A/AA beef, under (YUTM) and over (YOTM) 30 mo of age and the four mature grades (D1, D2, D2 and D4). Subcutaneous fat between the 12th and 13th ribs over the longissimus muscle was obtained from 18_21 animals per grade. Fatty acids were analyzed using a combination of silver-ion HPLC and GC with a highly polar 100 m column. There were no differences in total trans-18:1 content amongst grades, but adipose tissue from grade D1, D2 and D4 had more 11t-18:1 than YUTM (PB0.05), whereas adipose tissue from YUTM carcasses had more 10t-18:1 than all other grades (PB0.05). Adipose tissue from YUTM carcasses also had less total CLA (PB0.05) than the D grades, mainly due to a lower level of 9c,11t-CLA, but they had slightly more 7t,9c-CLA and 10t,12c-CLA (PB0.05). Adipose tissue from YOTM and D grades contained more n-3 fatty acids relative to YUTM (0.56% vs. 0.29%; PB0.05) and lower n-6:n-3 ratios (PB0.05). Overall, older animals (YOTM and D grades) had adipose tissue compositions with higher levels of fatty acids with reported health benefits. Taken together, these higher levels may provide opportunities for value added marketing if regulatory authorities allow claims for their enrichment based on demonstrated health benefits. Higher concentrations of beneficial fatty acids, however, need to be considered within the context of the complete fatty acid profile and it would be important to demonstrate their advantages in the presence of relatively high levels of saturated fatty acids.
Resumo:
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids (omega-3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and omega-3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of omega-3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and omega-3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Resumo:
Although menhaden, Brevoortia spp., represent 23.5 percent of United States commercial fishery landings, they represent only about 2.6 percent of the total landed value of fishery products. New food products and markets are needed to increase the economic value of the menhaden resource. This paper describes investigations of menhaden as a raw material for both traditional and new forms of food products. Canned menhaden is a logical food product, but the production of a menhaden surimi with good functionality has recently been demonstrated. The U.S. Food and Drug Administration has placed partially hydrogenated menhaden oil on the GRAS list of ingredients for food products, but a decision on the status of nutritionally beneficial refined menhaden oil is not yet available. Refined menhaden oil is currently the raw material for biomedical test materials being used in research approved by the National Institutes of Health to determine the health benefits of fish oils and omega-3 fatty acids. The test materials are being produced, with strict quality controls, at the NMFS Charleston Laboratory.
Resumo:
Lionfish, Pterois volitans and P. miles, are native to the Indo-Pacific and have recently invaded the Western Atlantic Ocean. Strategies for control of this invasion have included limited removal programs and promotion of lionfish consumption at both local and commercial scales. We demonstrate that lionfish meat contains higher levels of healthy n-3 fatty acids than some frequently consumed native marine fish species. Mean lionfish fillet yield was 30.5% of the total body wet weight, a value that is similar to that of some grouper and porgy species. A sensory evaluation indicated that lionfish meet the acceptability threshold of most consumers.
Resumo:
Recent research by the authors evaluated strategies to reduce fishmeal and fish oil in diets for red drum by substituting terrestrial proteins and lipids while maintaining beneficial fatty acids with DHA supplements derived from marine algae. Results suggested fatty acid-enriched finishing diets can be used with growout diets containing little or no fishmeal and fish oil to achieve the desired DHA content in the final fish fillets.
Resumo:
A study was carried out to determine the effect of tocopherol acetate along with cod liver oil astaxanthin enriched Moina micrura (MC- control, Ml- tocopherol acetate enriched, M2-tocopherol acetate combined with cod liver oil (CLO) enriched and M3- tocopherol acetate combined with astaxanthin enriched) on growth, survival and fatty acid composition of M. rosenbergii (de Man) larvae (TC- unenriched Moina fed larvae, Tl- tocopherol acetate enriched Moina fed larvae, T2- tocopherol acetate + CLO enriched Moina fed larvae to T3 – tocopherol acetate+ astaxanthin enriched Moina fed larvae). Growth was expressed as the time taken in to the settlement of 95% post larvae. Maximum growth i.e., the lowest time taken to the 95% PL settlement (40 days) and the maximum survival percentage (61%) was observed in both T2 and T3 treatments fed with M2 and M3 Moina respectively. Minimum growth and survival was observed in unenriched Moina fed larvae (TC). In larval treatments T2, (larvae fed with (M2) vitamin E + CLO enriched Moina), showed a higher percentage of EPA, DHA and higher HUFA level than other treatments.
Resumo:
Lipid hydrolysis and the nature of fatty acids lost as a result of lipid hydrolysis in milk fish (Chanos chanos) during frozen storage at -20°C is discussed in this paper. There was a preferential loss of saturated acids during the first three weeks of storage. This was followed by loss of polyunsaturated acids during the next seven weeks. Sharp decrease in the levels of monounsaturated acids was observed from the 10th week of frozen storage. These observations are due to the preferential hydrolysis of phospholipids with relatively high proportion of saturated acids during the first three weeks, followed by the hydrolysis of phospholipids with high proportions of polyunsaturated fatty acids from the 3rd to the 10th week, and finally, predominant hydrolysis of neutral lipids from the 10th week onwards. Storage of fish in the ice prior to freezing was found to accelerate lipid hydrolysis, especially that of neutral lipids, during frozen storage.
Resumo:
The purpose for which this study was intended wasto compare nutritive value among the farmed Vannamei, sea Green Tiger and Banana shrimps native to the PersianGulf. To provide the samples of farmed shrimps at the end of the farming season (Oct. 23rd through Nov. 22nd of 2011), we chosen one farm of the Holleh Shrimp Farming, from which 100 shrimps were randomly selected. From among these 100 shrimps, 3 to 5 ones were taken to conduct an analysis upon. Further, to obtain the Banana and Green Tiger shrimps sampling was done at the fishing season (July 23rd through Aug. 22rd of 2011) at Halileh Fishing Wharf located in Bushehr Fishing Harbor and also Bandar Abbas Wharf. The samples obtained were immediately kept in the ice powder. After some biometric tasks done upon them, they were at the shortest possible time transferred to a laboratory where they went through various experiments to determine their content of raw protein, fat, ash, moisture, various fatty acids and their types, cholesterol, vitamins A and E, and such mineral elements as iron and calcium. All the experimentswere carried out three times to establish confidence in the results to be obtained. Findings of the comparison showed the content of raw protein, fat, moisture, and ash of, respectively, 23.233%, 600%, 73.077% and 2.500% for the Vannamei samples, of 22.717%, 427%, 74.133% and 1.826% for our Banana shrimps and of 17.377%, 430%, 79.866% and 1.313% for the Green Tiger samples. A total of 24 fatty acids for the Vannamei shrimps and 27 for the Banana and Green Tiger were detected. SFA of the Banana shrimps was 368.45 mg/100g (51.76%), while those of the Vannamei and Green Tiger samples were observed, respectively, 363.54 mg/100g (37.26%) and 296.06 mg/100g (49.12%).A similar measurement for MUFA content of the three types of our samples revealed 243.85mg/100g (24.9%) for the Vannamei, 203.177 mg/100g (33.76%) for the Green Tiger and 179.033 mg/100g (25.14%) for the Banana shrimps. The content of PUFA unsaturated fatty acids in the Vannamei, 131 Green Tiger and Banana samples were, respectively, 370.660 mg/100g (37.84%), 101.573 mg/100g (16.9%) and 163.733 mg/100g (23.1%). Further, the comparison found a omega-3-fatty-acids total of 151.747 mg/100g(15.51%) for the Vannamei, 57.123 mg/100g (9.54%) for the Green Tiger and 130.460 mg/100g (18.46%) for the Banana species under study.