951 resultados para Micropattern gaseous detectors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical procedure for solving the nongray radiative transfer equation (RTE) in two-dimensional cylindrical participating media is presented. Nongray effects are treated by using a narrow-band approach. Radiative emission from CO, CO2, H2O, CH4 and soot is considered. The solution procedure is applied to study radiative heat transfer in a premixed CH4-O2, laminar, flame. Temperature, soot and IR-active species molar fraction distributions are allowed to vary in the axial direction of the flame. From the obtained results it is possible to quantify the radiative loss in the flame, as well as the importance of soot radiation as compared to gaseous radiation. Since the solution procedure is developed for a two-dimensional cylindrical geometry, it can be applied to other combustion systems such as furnaces, internal combustion engines, liquid and solid propellant combustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interferometer for low resolution portable Fourier Transform middle infrared spectrometer was developed and studied experimentally. The final aim was a concept for a commercial prototype. Because of the portability, the interferometer should be compact sized and insensitive to the external temperature variations and mechanical vibrations. To minimise the size and manufacturing costs, Michelson interferometer based on plane mirrors and porch swing bearing was selected and no dynamic alignment system was applied. The driving motor was a linear voice coil actuator to avoid mechanical contact of the moving parts. The driving capability for low mirror driving velocities required by the photoacoustic detectors was studied. In total, four versions of such an interferometer were built and experimentally studied. The thermal stability during the external temperature variations and the alignment stability over the mirror travel were measured using the modulation depth of the wide diameter laser beam. Method for estimating the mirror tilt angle from the modulation depth was developed to take account the effect from the non-uniform intensity distribution of the laser beam. The spectrometer stability was finally studied also using the infrared radiation. The latest interferometer was assembled for the middle infrared spectrometer with spectral range from 750 cm−1 to 4500 cm−1. The interferometer size was (197 × 95 × 79) mm3 with the beam diameter of 25 mm. The alignment stability as the change of the tilt angle over the mirror travel of 3 mm was 5 μrad, which decreases the modulation depth only about 0.7 percent in infrared at 3000 cm−1. During the temperature raise, the modulation depth at 3000 cm−1 changed about 1 . . . 2 percentage units per Celsius over short term and even less than 0.2 percentage units per Celsius over the total temperature raise of 30 °C. The unapodised spectral resolution was 4 cm−1 limited by the aperture size. The best achieved signal to noise ratio was about 38 000:1 with commercially available DLaTGS detector. Although the vibration sensitivity requires still improving, the interferometer performed, as a whole, very well and could be further developed to conform all the requirements of the portable and stable spectrometer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Master’s Thesis is dedicated to the simulation of new p-type pixel strip detector with enhanced multiplication effect. It is done for high-energy physics experiments upgrade such as Super Large Hadron Collider especially for Compact Muon Solenoid particle track silicon detectors. These detectors are used in very harsh radiation environment and should have good radiation hardness. The device engineering technology for developing more radiation hard particle detectors is used for minimizing the radiation degradation. New detector structure with enhanced multiplication effect is proposed in this work. There are studies of electric field and electric charge distribution of conventional and new p-type detector under reverse voltage bias and irradiation. Finally, the dependence of the anode current from the applied cathode reverse voltage bias under irradiation is obtained in this Thesis. For simulation Silvaco Technology Computer Aided Design software was used. Athena was used for creation of doping profiles and device structures and Atlas was used for getting electrical characteristics of the studied devices. The program codes for this software are represented in Appendixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing levels of atmospheric ammonia from anthropogenic sources have become a serious problem for natural vegetation. Short-term effects of different ammoniacal sources on the N metabolism of Tillandsia pohliana, an atmospheric bromeliad, were investigated. One-year-old, aseptically grown plants were transferred to a modified Knudson medium lacking N for three weeks. Plants were subsequently transferred to Knudson media supplemented with 0.5, 1.0, or 1.5 mM of N in the forms of NH3 or NH4+ as the sole N source. The activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH-NADH) were determined after 40 h. The GS activity was stimulated significantly by increasing the levels of the gaseous form. The GDH-NADH activity increased significantly under increasing N concentrations with NH3, while no significant differences were observed with NH4+ as a N source. These results may reflect a faster NH3 absorption by T. pohliana compared to NH4+ uptake. The increased activity of GDH-NADH in NH3 treatment may play a role in protecting the cells from the toxic effects of increased endogenous level of free ammonium. A raise in the concentration of N, especially in the form of NH3, greatly increased the content of free amino acids and soluble proteins. A possible utilisation of T. pohliana to evaluate the changes of atmospheric gaseous ammonia is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kiinteiden polttoaineiden muuntaminen kaasumaiseen muotoon eli kaasuttaminen herätti jo vuosia sitten tutkijoiden kiinnostusta. Suomessa yleinen mielenkiinto on viimeaikoina keskittynyt edullisempien polttoaineiden kaasuttamiseen ja saatavan tuotekaasun polttamiseen. Lahti Energian uudessa Kymijärvi 2 voimalaitoksessa kaasutetaan puuta ja kierrätyspolttoainetta (REF). Saatava tuotekaasu jäähdytetään ja suodatetaan, jotta epäpuhtaudet saadaan pois tuotekaasusta. Puhdistettu tuotekaasu poltetaan kaasukattilassa korkeilla höyrynarvoilla. Tuotekaasun jäähdyttämistä ei ole paljoa tehty eikä siitä ole juurikaan tieteellistä tutkimusta eikä kokemusta. Tuotekaasun jäähtyessä partikkelit tarttuvat lämpöpinnoille aiheuttaen kerrostumia. Kerrostumat heikentävät lämmönsiirtoa olennaisesti. Tämän työn tarkoitus on tutkia kaasutusprosessia, tuotekaasun jäähdyttimen likaantumista sekä antaa lisätietoja likaantumiseen vaikuttavista tekijöistä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kaakkois-Suomen alueella uusiutuvan energian käyttö ja erityisesti metsäenergian käyttö on kasvanut merkittävästi 2000-luvulla. Tulevaisuudessa metsäenergia nähdään edelleen potenti-aalisimpana vaihtoehtona korvattaessa fossiilisia polttoaineita lämpö- ja voimalaitoskokoluo-kassa. Muita uusiutuvan energian vaihtoehtoja ovat mm. tuuli- ja aurinkovoima, biokaasu sekä erilaiset kiinteät ja nestemäiset polttoainejalosteet. Tulevaisuudessa alueella voi olla mahdollis-ta tuottaa niin kansalliseen kuin kansainväliseen vientiin esim. biopolttonesteitä, biokaasua ja biohiiltä. Tutkimushankkeen tavoitteena oli selvittää metsäenergia-alan alueelliset toimijat sekä metsä-energian soveltuvuus ja liiketoimintamahdollisuudet Kaakkois-Suomen alueen energian tuo-tannossa. Tutkimus koostui seuraavista osatehtävistä: metsäsektorin toimijakentän kartoitus, metsäenergian alueelliset liiketoimintamahdollisuudet, puuperäisten polttoainejalosteiden käyttö- ja liiketoimintamahdollisuudet, muiden uusiutuvien energialähteiden käyttömahdolli-suudet ja vaikutukset Kaakkois-Suomessa. Tutkimuksessa arvioitiin myös Kaakkois-Suomen metsäenergian hankinnan työllisyysvaikutuksia. Tutkimuksen ohjausryhmänä toimi Kaakkois-Suomen metsäenergianeuvottelukunta. Tutkimuksessa kyselytutkimuksella selvitettiin metsäenergian tuottajien ja käyttäjien mielipi-teitä ja kehittämiskohteita toimialalta. Kaakkois-Suomessa hyödynnettävistä uusiutuvista energialähteistä selvitettiin nykyinen käyttö sekä arvioitiin tulevaisuuden hyödyntämismah-dollisuuksia vuonna 2020. Nämä tulokset esitettiin Kaakkois-Suomen energiataseen avulla. Kaakkois-Suomessa uusiutuvista energialähteistä puupolttoaineilla on merkittävin rooli metsä-teollisuuden johdosta ja alueen metsäenergian käyttö voi kasvaa jopa 1,7 TWh:in, mikäli fos-siilisia energialähteitä korvataan edelleen voimalaitoksissa ja lämpökeskuksissa. Metsäenergian käytön kasvussa alueen kunnilla on merkittävä rooli. Viime vuosina erityisesti tuulivoiman tuotanto on kasvanut ja tulee kasvamaan edelleen. Samoin aurinkoenergian hyödyntäminen kiinteistökokoluokassa on lisääntynyt voimakkaasti. Lisäksi maakuntaan on suunnitteilla kiin-teiden, nestemäisten ja kaasumaisten polttoainejalosteiden tuotantolaitoksia. Toteutuessaan laitokset voivat lisätä metsäenergian käyttöä merkittävästi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän kandidaatintyön tavoitteena oli selvittää mahdollisuuksia 14C:n kemiallisten muotojen eriyttämiseen käyttäen Loviisan voimalaitoksella olemassa olevaa näytteenkeräyslaitteistoa. Lisäksi tarkoituksena oli selvittää parhaiten tähän käyttötarkoitukseen soveltuva zeoliittityyppiä tyypeistä 4A, 5A ja 13X. Työn kirjallisessa osassa käsitellään ydinvoimalaitoksen C14-päästöjä keskittyen pääosin Loviisan VVER-laitokseen. Adsorption osalta esitellään kaupallisesti käytettyjä adsorptiomateriaaleja ja paneudutaan adsorptioon fysikaalisena ja kemiallisena ilmiönä. Lisäksi esitellään kahden desorptiomenetelmän perusperiaatteet. Kirjallisen osan lopussa kootaan tutkimukseen vaikuttavia tekijöitä ja esitellään aiemmin käytössä ollut näytteenkeräyslaitteisto. Kokeellisessa osassa esitellään työssä käytetyt laitteistot. Lisäksi on kuvattu mittausten suoritus nestetuikelaskurilla. Tämän jälkeen työssä esitellään mittaustuloksien käsittely ja näin saadut tulokset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenylyl cyclase (AC) isoforms catalyze the synthesis of 3',5'-cyclic AMP from ATP. These isoforms are critically involved in the regulation of gene transcription, metabolism, and ion channel activity among others. Nitric oxide (NO) is a gaseous product whose synthesis from L-arginine is catalyzed by the enzyme NO synthase. It has been well established that NO activates the enzyme guanylyl cyclase, but little has been reported on the effects of NO on other important second messengers, such as AC. In the present study, the effects of sodium nitroprusside (SNP), a nitric oxide-releasing compound, on COS-7 cells transfected with plasmids containing AC types I, II, V and VI were evaluated. Total inhibition (~98.5%) of cAMP production was observed in COS-7 cells transfected with the AC I isoform and previously treated with SNP (10 mM) for 30 min, when stimulated with ionomycin. A high inhibition (~76%) of cAMP production was also observed in COS-7 cells transfected with the AC VI isoform and previously treated with SNP (10 mM) for 30 min, when stimulated with forskolin. No effect on cAMP production was observed in cells transfected with AC isoforms II and V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkimuksen tarkoituksena oli kartoittaa lämpötilan vaikutusta veden orgaanisten haitta-aineiden hapetuksessa PCD-menetelmällä. Kokeita tehtiin näytteiden eri alkulämpötiloilla. Malliyhdisteenä kokeissa käytettiin oksaalihappoa. Teoriaosuudessa käsiteltiin pulssittaista koronapurkausta ilmiönä. Lisäksi tarkasteltiin, kuinka PCD-menetelmällä muodostuu hapettimia neste-kaasufaasissa. Syntyvistä hapettimista keskityttiin otsoniin ja hydroksyyliradikaaliin. Kokeellisessa osuudessa esiteltiin käytetty PCD-laitteisto. Esittelyn jälkeen siirryttiin hapetuskokeiden kuvaamiseen ja analyysin suorittamiseen titrauksella. Lopuksi koottiin tulokset. Tutkimuksissa prosessin hapetustehon havaittiin heikentyvän lämpötilan noustessa tutkitulla lämpötila-alueella, mikä voi selittyä kaasufaasissa muodostuvan otsonin heikentyvällä liukoisuudella. Tuloksia voidaan pitää viitteellisinä, ja selkeän mallin muodostamiseksi tarvitaan jatkotutkimuksia laajemmalla lämpötila-alueella tarkasti toistettavilla koejärjestelyillä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Large Hadron Collider (LHC) in The European Organization for Nuclear Research (CERN) will have a Long Shutdown sometime during 2017 or 2018. During this time there will be maintenance and a possibility to install new detectors. After the shutdown the LHC will have a higher luminosity. A promising new type of detector for this high luminosity phase is a Triple-GEM detector. During the shutdown these detectors will be installed at the Compact Muon Solenoid (CMS) experiment. The Triple-GEM detectors are now being developed at CERN and alongside also a readout ASIC chip for the detector. In this thesis a simulation model was developed for the ASICs analog front end. The model will help to carry out more extensive simulations and also simulate the whole chip before the whole design is finished. The proper functioning of the model was tested with simulations, which are also presented in the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of biodiesel through transesterification has created a surplus of glycerol on the international market. In few years, glycerol has become an inexpensive and abundant raw material, subject to numerous plausible valorisation strategies. Glycerol hydrochlorination stands out as an economically attractive alternative to the production of biobased epichlorohydrin, an important raw material for the manufacturing of epoxy resins and plasticizers. Glycerol hydrochlorination using gaseous hydrogen chloride (HCl) was studied from a reaction engineering viewpoint. Firstly, a more general and rigorous kinetic model was derived based on a consistent reaction mechanism proposed in the literature. The model was validated with experimental data reported in the literature as well as with new data of our own. Semi-batch experiments were conducted in which the influence of the stirring speed, HCl partial pressure, catalyst concentration and temperature were thoroughly analysed and discussed. Acetic acid was used as a homogeneous catalyst for the experiments. For the first time, it was demonstrated that the liquid-phase volume undergoes a significant increase due to the accumulation of HCl in the liquid phase. Novel and relevant features concerning hydrochlorination kinetics, HCl solubility and mass transfer were investigated. An extended reaction mechanism was proposed and a new kinetic model was derived. The model was tested with the experimental data by means of regression analysis, in which kinetic and mass transfer parameters were successfully estimated. A dimensionless number, called Catalyst Modulus, was proposed as a tool for corroborating the kinetic model. Reactive flash distillation experiments were conducted to check the commonly accepted hypothesis that removal of water should enhance the glycerol hydrochlorination kinetics. The performance of the reactive flash distillation experiments were compared to the semi-batch data previously obtained. An unforeseen effect was observed once the water was let to be stripped out from the liquid phase, exposing a strong correlation between the HCl liquid uptake and the presence of water in the system. Water has revealed to play an important role also in the HCl dissociation: as water was removed, the dissociation of HCl was diminished, which had a retarding effect on the reaction kinetics. In order to obtain a further insight on the influence of water on the hydrochlorination reaction, extra semi-batch experiments were conducted in which initial amounts of water and the desired product were added. This study revealed the possibility to use the desired product as an ideal “solvent” for the glycerol hydrochlorination process. A co-current bubble column was used to investigate the glycerol hydrochlorination process under continuous operation. The influence of liquid flow rate, gas flow rate, temperature and catalyst concentration on the glycerol conversion and product distribution was studied. The fluid dynamics of the system showed a remarkable behaviour, which was carefully investigated and described. Highspeed camera images and residence time distribution experiments were conducted to collect relevant information about the flow conditions inside the tube. A model based on the axial dispersion concept was proposed and confronted with the experimental data. The kinetic and solubility parameters estimated from the semi-batch experiments were successfully used in the description of mass transfer and fluid dynamics of the bubble column reactor. In light of the results brought by the present work, the glycerol hydrochlorination reaction mechanism has been finally clarified. It has been demonstrated that the reactive distillation technology may cause drawbacks to the glycerol hydrochlorination reaction rate under certain conditions. Furthermore, continuous reactor technology showed a high selectivity towards monochlorohydrins, whilst semibatch technology was demonstrated to be more efficient towards the production of dichlorohydrins. Based on the novel and revealing discoveries brought by the present work, many insightful suggestions are made towards the improvement of the production of αγ-dichlorohydrin on an industrial scale.