947 resultados para Methane Adsorption
Resumo:
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle-cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s).
Resumo:
Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4) variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH) archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites), the Kr isobaric interference (up to ~0.8 ‰, system dependent), inter-laboratory calibration offsets (~0.2 ‰) and uncertainties in past CH4 levels (~0.5 ‰).
Resumo:
Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at −196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL – at standard temperature and pressure (STP) – of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.
Resumo:
Stable carbon isotope analysis of methane (delta C-13 of CH4) on atmospheric samples is one key method to constrain the current and past atmospheric CH4 budget. A frequently applied measurement technique is gas chromatography (GC) isotope ratio mass spectrometry (IRMS) coupled to a combustion-preconcentration unit. This report shows that the atmospheric trace gas krypton (Kr) can severely interfere during the mass spectrometric measurement, leading to significant biases in delta C-13 of CH4, if krypton is not sufficiently separated during the analysis. According to our experiments, the krypton interference is likely composed of two individual effects, with the lateral tailing of the doubly charged Kr-86 peak affecting the neighbouring m/z 44 and partially the m/z 45 Faraday cups. Additionally, a broad signal affecting m/z 45 and especially m/z 46 is assumed to result from scattered ions of singly charged krypton. The introduced bias in the measured isotope ratios is dependent on the chromatographic separation, the krypton-to-CH4 mixing ratio in the sample, the focusing of the mass spectrometer as well as the detector configuration and can amount to up to several per mil in delta C-13. Apart from technical solutions to avoid this interference, we present correction routines to a posteriori remove the bias.
Resumo:
BACKGROUND The activation of multiple pro- and anti-inflammatory mediators is a key feature in the pathophysiology of sepsis. Many of these mediators may directly contribute to organ dysfunction and determine disease severity. So far our ability to modulate these upregulated mediator pathways is very limited. Therefore the adsorption of such mediators via an extracorporeal circuit may be a beneficial intervention during sepsis. OBJECTIVES Recent technical innovations have made this intervention feasible. Both systems for exclusive mediator adsorption and for adsorption beside a conventional renal replacement therapy are now available. Some of the membranes can adsorb a broad range of mediators by rather unspecific binding, whereas others specifically adsorb endotoxin or mediators. DISCUSSION Whilst biochemical efficacy could be demonstrated by some of the systems, controlled and randomized studies demonstrating improved clinical endpoints are still lacking. Therefore the use of such therapies outside clinical studies cannot yet be recommended.
Resumo:
Perchlorate adsorption on Au(1 1 1) was investigated by cyclic voltammetry and surface-enhanced infrared absorption spectroscopy. We found that the electrosorption valency of ClO4− on Au(1 1 1) is ∼ 0.6 and the total coverage of ClO4− on Au(1 1 1) is higher (∼ 0.15) than previously estimated (∼ 0.04). Based on the experimental adsorption isotherms obtained from infrared spectra and the reconstruction-free cyclic voltammograms, we proposed a mechanism for the ClO4− adsorption on Au(1 1 1).
Resumo:
On Au(111) electrodes, the investigation of ClO4− adsorption is hampered by a simultaneous surface reconstruction. We demonstrate that these two processes can be decoupled in cyclic voltammograms by a proper choice of the scan rate and of the initial potential. Our approach allowed the establishment of a relation between potentials of zero charge for the reconstructed and unreconstructed Au(111) surfaces.
Resumo:
Daphnia can ingest methane-oxidizing bacteria and incorporate methanogenic carbon into their biomass, leading to low stable carbon isotope ratios (expressed as δ13C values) of their tissue. Therefore, δ13C analysis of Daphnia resting eggs (ephippia) in lake sediment records can potentially be used to reconstruct past in-lake availability of methane (CH4). However, detailed multilake studies demonstrating that δ13C values of recently deposited Daphnia ephippia (δ13Cephippia) are systematically related to in-lake CH4 concentrations (CH4aq) are still missing. We measured δ13Cephippia from surface sediments of 15 small lakes in Europe, and compared these values with late-summer CH4aq. δ13Cephippia ranged from −51.6‰ to −25.9‰, and was strongly correlated with CH4aq in the surface water and above the sediment (r −0.73 and −0.77, respectively), whereas a negative rather than the expected positive correlation was found with δ13C values of carbon dioxide (CO2) (r −0.54), and no correlation was observed with CO2aq. At eight sites, offsets between δ13 CCO2 and δ13Cephippia exceeded offsets between δ13 CCO2 and δ13Calgae reported in literature. δ13Cephippia was positively correlated with δ13C values of sedimentary organic matter (r 0.54), but up to 20.7‰ lower in all except one of the lakes (average −6.1‰). We conclude that incorporation of methanogenic carbon prior to ephippia formation must have been widespread by Daphnia in our study lakes, especially those with high CH4aq. Our results suggest a systematic relationship between δ13Cephippia values and CH4aq in small temperate lakes, and that δ13Cephippia analysis on sediment records may provide insights into past changes in in-lake CH4aq.
Resumo:
Methane (CH4) and carbon dioxide emissions from lakes are relevant for assessing the greenhouse gas output of wetlands. However, only few standardized datasets describe concentrations of these gases in lakes across different geographical regions. We studied concentrations and stable carbon isotopic composition (δ13C) of CH4 and dissolved inorganic carbon (DIC) in 32 small lakes from Finland, Sweden, Germany, the Netherlands, and Switzerland in late summer. Higher concentrations and δ13C values of DIC were observed in calcareous lakes than in lakes on non-calcareous areas. In stratified lakes, δ13C values of DIC were generally lower in the hypolimnion due to the degradation of organic matter (OM). Unexpectedly, increased δ13C values of DIC were registered above the sediment in several lakes. This may reflect carbonate dissolution in calcareous lakes or methanogenesis in deepwater layers or in the sediments. Surface water CH4 concentrations were generally higher in western and central European lakes than in Fennoscandian lakes, possibly due to higher CH4 production in the littoral sediments and lateral transport, whereas CH4 concentrations in the hypolimnion did not differ significantly between the regions. The δ13C values of CH4 in the sediment suggest that δ13C values of biogenic CH4 are not necessarily linked to δ13C values of sedimentary OM but may be strongly influenced by OM quality and methanogenic pathway. Our study suggests that CH4 and DIC cycling in small lakes differ between geographical regions and that this should be taken into account when regional studies on greenhouse gas emissions are upscaled to inter-regional scales.