877 resultados para Median Voter Hypothesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upper 38 m of Hole 722B sediments (Owen Ridge, northwest Arabian Sea) was sampled at 20 cm intervals and used to develop records of lithogenic percent, mass accumulation rate, and grain size spanning the past 1 m.y. Over this interval, the lithogenic component of Owen Ridge sediments can be used to infer variability in the strength of Arabian Sea summer monsoon winds (median grain size) and the aridity of surrounding dust source-areas (mass accumulation rate; MAR in g/cm**2/k.y). The lithogenic MAR has strong 100, 41, and 23 k.y. cyclicities and is forced primarily by changes in source-area aridity associated with glacial-interglacial cycles. The lithogenic grain size, on the other hand, exhibits higher frequency variability (23 k.y.) and is forced by the strength of summer monsoon winds which, in turn, are forced by the effective sensible heating of the Indian-Asian landmass and by the availability of latent heat from the Southern Hemisphere Indian Ocean. These forcing mechanisms combine to produce a wind-strength record which has no strong relationship to glacial-interglacial cycles. Discussion of the mechanisms responsible for production of primary Milankovitch cyclicities in lithogenic records from the Owen Ridge is presented elsewhere (Clemens and Prell, 1990, doi:10.1029/PA005i002p00109). Here we examine the 1 m.y. record from Hole 722B focusing on different aspects of the lithogenic components including an abrupt change in the monsoon wind-strength record at 500 k.y., core-to-core reproducibility, comparison with magnetic susceptibility, coherency with a wind-strength record from the Pacific Ocean, and combination frequencies in the wind-strength record. The Hole 722B lithogenic grain-size record shows an abrupt change at 500 k.y. possibly indicating decreased monsoon wind-strength over the interval from 500 k.y. to present. The grain-size decrease appears to be coincident with a loss of spectral power near the 41 k.y. periodicity. However, the grain-size decrease is not paralleled in the Globigerina bulloides upwelling record, an independent record of summer monsoon wind-strength (Prell, this volume). These observations leave us with competing hypotheses possibly involving: (1) a decrease in the sensitivity of monsoon windstrength to obliquity forcing, (2) decoupling of the grain size and G. bulloides records via a decoupling of the nutrient supply from wind-driven upwelling, and/or (3) a change in dust source-area or the patterns of dust transporting winds. Comparison of the lithogenic grain size and weight percent records from Hole 722B with those from a nearby core shows that the major and most minor events are well replicated. These close matches establish our confidence in the lithogenic extraction techniques and measurements. Further, reproducibility on a core-to-core scale indicates that the eolian depositional signal is regionally strong, coherent, and well preserved. The lithogenic weight percent and magnetic susceptibility are extremely well correlated in both the time and frequency domains. From this we infer that the magnetically susceptible component of Owen Ridge sediments is of terrestrial origin and transported to the Owen Ridge via summer monsoon winds. Because of the high correlation with the lithogenic percent record, the magnetic susceptibility record can be cast in terms of lithogenic MAR and used as a high resolution proxy for continental aridity. In addition to primary Milankovitch periodicities, the Hole 722B grain-size record exhibits periodicity at 52 k.y. and at 29 k.y. Both periodicities are also found in the grain-size record from piston core RC11-210 in the equatorial Pacific Ocean. Comparison of the two grain-size records shows significant coherence and zero phase relationships over both the 52 and 29 k.y. periodicities suggesting that the strengths of the Indian Ocean monsoon and the Pacific southeasterly trade winds share common forcing mechanisms. Two possible origins for the 52 and 29 k.y. periodicities in the Hole 722B wind-strength record are (1) direct Milankovitch forcing (54 and 29 k.y. components of obliquity) and (2) combination periodicities resulting from nonlinear interactions within the climate system. We find that the 52 and 29 k.y. periodicities show stronger coherency with crossproducts of eccentricity and obliquity (29 k.y.) and precession and obliquity (52 k.y.) than with direct obliquity forcing. Our working hypothesis attributes these periodicities to nonlinear interaction between external insolation forcing and internal climatic feedback mechanisms involving an interdependence of continental snow/ice-mass (albedo) and the hydrological cycle (latent heat availability).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data and observation from Drifting Program Leg 121 and plate-tectonic reconstructions indicate that the Ninetyeast Ridge (Indian Ocean) was derived from the interaction of a deep-seated Dupal hotspot and a nearby spreading-ridge axis. The 5000-km-long ridge, from lat 34°S to lat 10°N, was drilled at three sites during Leg 121. About 178 m of basalt, >38 to >80 Ma, were recovered from a total penetration of ~310 m. Shipboard petrographic and geochemical studies showed that each site has distinctive characteristics. Most of the cored lavas have a tholeiitic basalt composition. Incompatible-element abundanes and ratios show systematic trends, consistent with an origin for the Ninetyeast Ridge lavas by mixing between a depleted component-Indian Ocean mid-ocean ridge basalt-and an enriched component-oceanic-island basalt similar to that observed in the youngest alkalic basalts from the Kerguelen archipelago. Preliminary shore-based trace element abundance and isotopic data are compatible with this hypothesis, although Pb isotopes indicate the involvement of another component. The long-lasting and more or less continuous activity of the Kerguelen-Heard plume (ca. 115 Ma), now located under Heard Island, south of the Southeast Indian Ridge, provides evidence that the source of the Dupal anomaly is deep seated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration and isotopic composition of Nd in water and particles collected in the western Mediterranean Sea are studied by two complementary approaches. The first examines local vertical profiles and time series; the second considers the global Nd budget of the whole western Mediterranean Sea. These two approaches are used to quantify the Nd inputs and the dissolved/particulate exchange processes in the water column. Two profiles of Nd in seawater in the Ligurian Sea taken in May and October 1992 show an average epsilon-Nd(0) = -9.6 ± 0.5. Seawater from the Strait of Sicily, representative of the eastern waters flowing into the western basin, is more radiogenic [epsilon-Nd(0) = -7.7 ± 0.6]. Profiles of particulate matter collected in sediment traps in coastal (Gulf of Lions) and offshore (Ligurian Sea) environments are also shown. Particles are enriched in Nd and are more radiogenic near the coast than offshore. Measurements of Nd concentration and epsilon-Nd(0) of external sources to the western Mediterranean Sea compared with the literature data demonstrate that particulate flux of atmospheric Saharan origin are more rich ([Nd] = 38 ± 10 µg/g) and less radiogenic [epsilon-Nd(0) = -13.0 ± 1.0] than riverine particulate discharge ([Nd] = 21.5 ± 4.4 µg/g; epsilon-Nd(0) = -10.1 ± 0.5), allowing to trace Nd particulate inputs in the water column. Nd atmospheric flux appears to be the major source into the whole western basin, although lateral advection of riverine material is the prevailing process in the coastal environment. Offshore, the vertical propagation of an important Saharan dust event has been recorded for two months in sediment traps at 80, 200 and 1000 m. The evolution of the resulting negative epsilon-Nd(0) peak along depth and time shows that the particles reach 200 m on a time scale of one week. For the first time, the Nd budget in the western Mediterranean basin is constrained by both concentrations and isotopic compositions measured in particles and seawater. Surface budget requires a remobilization of 30 ± 20% of particulate Nd input. In deep water, dissolved Nd concentrations are balanced by a scavenging of 10 ± 20% of the sinking particulate flux. On the other hand, the deep isotopic compositions suggest an exchange between 30 ± 20% of the sinking particles and the deep waters. The hypothesis of a non-stationary regime for the surface waters in the Ligurian Sea is also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasmosis is a significant public health threat for Inuit in the Canadian Arctic. This study aimed to investigate arctic seals as a possible food-borne source of infection. Blood samples collected from 828 seals in 7 Canadian Arctic communities from 1999 to 2006 were tested for Toxoplasma gondii antibodies using a direct agglutination test. Polymerase chain reaction (PCR) was used to detect T. gondii DNA in tissues of a subsample of seals. Associations between seal age, sex, species, diet, community and year of capture, and serological test results were investigated by logistic regression. Overall seroprevalence was 10.4% (86/828). All tissues tested were negative by PCR. In ringed seals, seroprevalence was significantly higher in juveniles than in adults (odds ratio = 2.44). Overall, seroprevalence varied amongst communities (P = 0.0119) and by capture year (P = 0.0001). Our study supports the hypothesis that consumption of raw seal meat is a significant source of infection for Inuit. This work raises many questions about the mechanism of transfer of this terrestrial parasite to the marine environment, the preponderance of infection in younger animals and the natural course of infection in seals. Further studies to address these questions are essential to fully understand the health risks for Inuit communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal-upper abyssal (1500-2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time. At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms. The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers ("Strangelove Ocean Model") or to the collapse of the biotic pump ("Living Ocean Model").

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the EBENE cruise (November 1996), distributions of biogenic silica concentration and production rates were investigated in the surface waters of the equatorial Pacific (180°W, from 8°S to 8°N), with particular emphasis on the limitation of the biogenic silica production by ambient silicic acid concentrations. Integrated over the depth of the euphotic layer, concentrations of biogenic silica and production rates were maximum at the Equator (8.0 and 2.6 mmol/m**2/d) and decreased more or less symmetrically polewards. Contribution of diatoms to the new production was estimated indirectly, comparing biogenic silica production rates and available data of new and export production in the same area. This comparison shows that new production in the equatorial area could mostly be sustained by diatoms, accounting for the major part of the exported flux of organic carbon. Kinetics experiments of silicic acid enrichment were performed. Half saturation constants were 1.57 µM at 3°S and 2.42 µM at the Equator close to the ambient concentrations. The corresponding Vmax values for Si uptake were 0.028/h at 3°S and 0.052/h at the equator. Experiments also show that in situ rates were restricted to 13-78% of Vmax, depending on ambient silicic acid concentrations. This work provides the first direct evidence that the rate of Si uptake by diatom populations of the equatorial Pacific is limited by the ambient concentration of silicic acid. However, such Si limitation might not be sufficient in itself to explain the low diatom growth rates observed, and additional limitation is suggested. One hypothesis that is consistent with the results of Fe limitation studies is that Fe and Si limitations may interact, rather than just being a mutually exclusive explanation for the HNLC character of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments are the main sink in the oceanic phosphorus (P) cycle. The activity of benthic microorganisms is decisive for regeneration, reflux, or burial of inorganic phosphate (Pi), which has a strong impact on marine productivity. Recent formation of phosphorites on the continental shelf and a succession of different sedimentary environments make the Benguela upwelling system a prime region for studying the role of microbes in P biogeochemistry. The oxygen isotope signature of pore water phosphate (d18OP) carries characteristic information of microbial P cycling: Intracellular turnover of phosphorylated biomolecules results in isotopic equilibrium with ambient water, while enzymatic regeneration of Pi from organic matter produces distinct offsets from equilibrium. The balance of these two processes is the major control for d18OP. Our study assesses the importance of microbial P cycling relative to regeneration of Pi from organic matter from a transect across the Namibian continental shelf and slope by combining pore water chemistry (sulfate, sulfide, ferrous iron, Pi), steady-state turnover rate modeling, and oxygen isotope geochemistry of Pi. We found d18OP values in a range from 12.8 per mill to 26.6 per mill, both in equilibrium as well as pronounced disequilibrium with water. Our data show a trend towards regeneration signatures (disequilibrium) under low mineralization activity and low Pi concentrations, and microbial turnover signatures (equilibrium) under high mineralization activity and high Pi concentrations. These findings are opposite to observations from water column studies where regeneration signatures were found to coincide with high mineralization activity and high Pi concentrations. It appears that preferential Pi regeneration in marine sediments does not necessarily coincide with a disequilibrium d18OP signature. We propose that microbial Pi uptake strategies, which are controlled by Pi availability, are decisive for the alteration of the isotope signature. This hypothesis is supported by the observation of efficient microbial Pi turnover (equilibrium signatures) in the phosphogenic sediments of the Benguela upwelling system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent works (Evelpidou et al., 2012) suggest that the modern tidal notch is disappearing worldwide due sea level rise over the last century. In order to assess this hypothesis, we measured modern tidal notches in several of sites along the Mediterranean coasts. We report observations on tidal notches cut along carbonate coasts from 73 sites from Italy, France, Croatia, Montenegro, Greece, Malta and Spain, plus additional observations carried outside the Mediterranean. At each site, we measured notch width and depth, and we described the characteristics of the biological rim at the base of the notch. We correlated these parameters with wave energy, tide gauge datasets and rock lithology. Our results suggest that, considering 'the development of tidal notches the consequence of midlittoral bioerosion' (as done in Evelpidou et al., 2012) is a simplification that can lead to misleading results, such as stating that notches are disappearing. Important roles in notch formation can be also played by wave action, rate of karst dissolution, salt weathering and wetting and drying cycles. Of course notch formation can be augmented and favoured also by bioerosion which can, in particular cases, be the main process of notch formation and development. Our dataset shows that notches are carved by an ensemble rather than by a single process, both today and in the past, and that it is difficult, if not impossible, to disentangle them and establish which one is prevailing. We therefore show that tidal notches are still forming, challenging the hypothesis that sea level rise has drowned them.