957 resultados para Mass transfer
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A criação de jacaré do Pantanal (Caiman crocodilus yacare) em cativeiro tem sido estimulada, e entre as técnicas de processamento de sua carne, a salga é um processo de conservação relativamente simples e de baixo custo. O objetivo deste trabalho foi estudar a cinética de difusão de cloreto de sódio em carne de jacaré do Pantanal criado em cativeiro, durante a salga úmida. Foram utilizados volumes limitados de salmoura e os experimentos foram realizados com relações salmoura/músculo de 3, 4 e 5, com concentrações de salmoura de 15%, 20% e 25% em peso e temperaturas de 10, 15 e 20ºC. A solução analítica da segunda lei de Fick, considerando difusão unidimensional em uma placa infinita em contato com uma solução bem agitada de volume limitado, foi utilizada para calcular os coeficientes de difusão efetivos de sal e estimar o conteúdo de cloreto de sódio nos filés. Obteve-se boa concordância entre o modelo analítico considerado e os dados experimentais. As difusividades do sal nos filés ocorreram na faixa de 0,47x10-10 a 9,62x10-10 m²/s.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Supercritical fluid extraction (SFE) from solids has proven to be technically feasible for almost any system; nonetheless, its economical viability has been proven for a restricted number of systems. A common practice is to compare the cost of manufacturing of vegetable extracts by a variety of techniques without deeply considering the huge differences in composition and functional properties among the various types of extracts obtained; under this circumstance, the cost of manufacturing do not favor SFE. Additionally, the influence of external parameters such as the agronomic conditions and the SFE system geometry are not considered. In the present work, these factors were studied for the system fennel seeds + CO2. The effects of the harvesting season and the degree of maturation on the global yields for the system fennel seeds + CO2 were analyzed at 300 bar and 40 degrees C. The effects of the pressure on the global yields were determined for the temperatures of 30 and 40 degrees C. Kinetics experiments were done for various ratios of bed height to bed diameter. Fennel extracts were also obtained by hydrodistillation and low-pressure solvent extraction. The chemical composition of the fennel extracts were determined by gas chromatography. The SFE maximum global yield (12.5%, dry basis) was obtained with dry harvested fennel seeds. Anethole and fenchone were the major constituents of the extract; the following fat acids palmitic (C16H32O2), palmitoleic stearic (C18H36O2), oleic (C18H34O2), linoleic (C18H32O2) and linolenic (C18H30O2) were also detected in the extracts. A relation between amounts of feed and solvent, bed height and diameter, and solvent flow rate was proposed. The models of Sovova, Goto et al. and Tan and Lion were capable of describing the mass transfer kinetics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Steady-state concentric cylinder equipment was used to determine the effective thermal conductivity of beans (Phaseolus vulgaris). The measuring cell had no heated end guards and its length to diameter ratio was 10.5. Glass beads were employed to assess the accuracy and repeatability of the experimental system under heat transfer conditions. The results agree well with those reported in the literature so that the system can be considered reliable. Corn was used to verify the system's accuracy under heat and mass transfer conditions. Again the results were satisfactory. Moisture migration was observed and measured during the tests with beans, but this behavior does not compromise thermal conductivity values if both thermal and mass transfer steady-states are correctly interpreted. The effective thermal conductivity increases linearly with increasing grain moisture content. Statistical regression leads to good estimates of the fitted parameters.
Resumo:
The apparent diffusion coefficients for sucrose, NaCl and water during osmotic dehydration of tomatoes in ternary solutions were determined. Long time experiments (up to 60 h) were carried out in order to determine equilibrium concentrations inside tomatoes, whereas short time experiments (up to 4 h) were performed to provide detailed information on kinetics of water loss and solids gain at the beginning of osmotic treatment. The mass transfer rates for water and solutes showed to be dependent of NaCl and sucrose concentrations in osmotic solution and simple regression models as functions of solutes concentration were determined for diffusion coefficients. Salt and sucrose diffusivities showed to be interdependent, with increasing NaCl concentration causing the enhancement of water loss, at the same time that higher sucrose contents hindered the excessive salt penetration. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this article we investigate experimentally the potential of using pulsating flows for drying of food grains. A Rijke type oscillator with an electrical heater was used to dry batches of soybean grains. Drying temperatures were 60 degreesC. We observed a decrease on the drying time for pulsating flows when compared with the conventional non-pulsating regime. This decrease depended on sample initial moisture content and weight, and on final sample moisture content. (C) 2004 Elsevier B.V. Ltd.
Resumo:
This paper presents a finite element numerical solution of free convection in a cavity with side walls maintained at constant but different temperatures. The predictions from the model and the method of solution were validated by comparison with the 'bench mark' solution and Vahl Davis' results and good agreement was found. The present model was used to obtain additional results over a wide range of Rayleigh number (10(3)-10(6)) and L/H ratios varying from 0.1 to 1.0. The predicted stream function patterns, temperature and velocity profiles as well as the mean Nusselt number were presented and discussed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The use of oxygen to enrich the oxidizer can be an attractive alternate to increase incineration rates of a combustion chamber originally designed to operate with air. For a certain fuel now rate, if some incineration parameters are held constant (as combustion chamber temperature, turbulence level, and residence time), an increase of incineration rates becomes possible with injection of oxygen. This work presents a theoretical evaluation of combustion air enrichment in a combustion chamber designed to incinerate aqueous residues using methane as fuel and air as oxidizer. Detailed chemistry was employed to predict pollutants formation. The overall process was investigated using the PSR routine from the CHEMKIN library. (C) 1999 Elsevier B.V. Ltd.
Resumo:
Viable cells immobilized in inert supports are currently studied for a wide range of bioprocesses. The intrinsic advantages of such systems over suspended cultures incite new research, including studies on fundamental aspects as well as on the industrial viability of these non-conventional processes. In aerobic culture of filamentous fungi, scale-up is hindered by oxygen mass transfer limitation through the support material and bioprocess kinetics must be studied together with mass transfer limitation. In this work, experimental and simulated data of cephalosporin C production were compared. Concentrations in the bulk fermentation medium and cellular mass profiles inside the bioparticles are focused. Immobilized cells were used in a tower bioreactor, operated in fed-batch mode. To describe the radial variation of oxygen concentration within the pellet, a dead core model was used. Despite the extremely low sugar concentrations, bioreaction rates in the pellets were limited by the dissolved oxygen concentration. Cell growth occurs only in the outer layers, a result also confirmed by scanning electron microscopy. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this manuscript we investigated experimentally the steady-state heat transfer to an important pseudoplastic fluid food, the soursop juice, flowing in laminar regime through circular and concentric annular ducts. The mean convection heat transfer coefficients, determined by measuring the bulk temperatures before and after the heating sections with constant temperatures of the tube walls, were used to correlate simple new empiric expressions to estimate the average Nusselt number in the thermal entrance of the considered geometries. In addition, the thermophysical properties of the tested fluid food, as well as the rheological behavior, being essential for the heat transfer analyses, were experimentally determined. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The effect of the concentration of sucrose solutions on the cellular structure of potato tissue in equilibrium at 27 degreesC was Studied. Two different methods of investigation were used to determine the volume of the different phases composing the cellular tissue of the potato when in equilibrium with the solutions. one based on data of the concentration itself and the overall volume of 2 mm slices after 48 h at equilibrium, and the other on microscopic images of cells in thin slices of fresh tissue stained with neutral red after an hour in equilibrium to show protoplasts, vacuoles and plasmolysis spaces. The results of these methods were compared with those obtained by a predictive thermodynamic approach considering the semipermeability of cell membranes. Phase volume data obtained from microscopic analysis were more similar to what was predicted by the theoretical model than those obtained by means of composition measurement. where the long equilibrium time apparently led to the loss of semi permeability of the cell membranes, since total volumes calculated without consideration of the cell membranes were similar to those measured. This suggests that the length of time of osmotic dehydration brings about a change in cell structure and the consequent involvement of a different mechanism in mass transfer. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Bioprocesses using filamentous fungi immobilized in inert supports present many advantages when compared to conventional free cell processes. However, assessment of the real advantages of the unconventional process demands a rigorous study of the limitations to diffusional mass transfer of the reagents, especially concerning oxygen. In this work, a comparative study was carried out on the cephalosporin C production process in defined medium containing glucose and sucrose as main carbon and energy sources, by free and immobilized cells of Cephalosporium acremonium ATCC 48272 in calcium alginate gel beads containing alumina. The effective diffusivity of oxygen through the gel beads and the effectiveness factors related to the respiration rate of the microorganism were determined experimentally. By applying Monod kinetics, the respiration kinetics parameters were experimentally determined in independent experiments in a complete production medium. The effectiveness factor experimental values presented good agreement with the theoretical values of the approximated zero-order effectiveness factor, considering the dead core model. Furthermore, experimental results obtained with immobilized cells in a 1.7-L tower bioreactor were compared with those obtained in 5-L conventional fermenter with free cells. It could be concluded that it is possible to attain rather high production rates working with relatively large diameter gel beads (ca. 2.5 mm) and sucrose consumption-based productivity was remarkably higher with immobilized cells, i.e., 0.33 gCPC/kg sucrose/h against 0.24 gCPC/kg sucrose/h in the aerated stirred tank bioreactor process. (C) 1999 John Wiley & Sons, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)