905 resultados para MOS devices
Resumo:
One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.
Resumo:
The perturbation of homeostatic mechanisms caused by interactions between any indwelling biomedical device and the biological medium into which it is implanted initiates a dynamic wound healing response from the host which can be rigorous and ongoing. The typical result of this response is a severe degradation in the performance and safety of the device, often to the extent of precluding their clinical use. Nitric oxide (NO) is an endogenously produced biomolecule capable of mediating many of the cellular processes leveraged against implanted devices. The in vivo performance of indwelling devices prepared with NO release coatings has recently been evaluated with very encouraging results. This work developed a platform capable of both generating programmable fluxes of NO and directly evaluating the performance of indwelling probes under different profiles of NO generation. This platform can be used to improve the efficacy of NO release materials in mitigating the host response.
Resumo:
Finite numbers of ions are present in microfluidic devices. This leads to ion limiting effects in microfluidic channels and electrode surfaces. These effects include electrode surface changes and ion concentration gradient formation across microfluidic channels, and can influence microfluidic device behavior. A literature survey on the use of electrochemical analysis techniques in micro- and nanofluidic devices was carried out, which puts into perspective the importance of electrode surface changes with regards to analytical microfluidic applications. Surface changes in Pt wire electrodes under various physiological buffer and electric field conditions were investigated using cyclic voltammetry (CV), SEM-EDS and XPS. Effects of surface changes on electrochemical analysis performance of Pt wire and thin film electrodes were investigated. Electrode surfaces were subjected to varying phosphate buffer and electric field conditions, and their CV performance was monitored. Electrode surfaces were also studied with SEM-EDS. Two studies of ion concentration gradient formation in microfluidic channels were conducted. In the first, concentration gradients of H+ and OH- ions generated on electrode surfaces were found to cause significant pH decreases in certain buffer and electric field conditions, which was also found to play a key role in iDEP manipulation of proteins. The role of electrode surface reactions in this case shows the importance of understanding electrode surface changes in microfluidic devices. In the second study of ion concentration gradient formation, Cl- ion concentration gradient formation was attempted to be quantified upon electric field application across a KCl solution. Electrokinetic transport of the Cl- indicating fluorophore MQAE contributed significantly to the fluorescence microscopy signals collected, complicating Cl- quantification as a function of position and time. It was shown that a dielectric coating on electrode surfaces is effective at preventing MQAE electrokinetic transport.
Resumo:
We propose integrated optical structures that can be used as isolators and polarization splitters based on engineered photonic lattices. Starting from optical waveguide arrays that mimic Fock space (quantum state with a well-defined particle number) representation of a non-interacting two-site Bose Hubbard Hamiltonian, we show that introducing magneto-optic nonreciprocity to these structures leads to a superior optical isolation performance. In the forward propagation direction, an input TM polarized beam experiences a perfect state transfer between the input and output waveguide channels while surface Bloch oscillations block the backward transmission between the same ports. Our analysis indicates a large isolation ratio of 75 dB after a propagation distance of 8mm inside seven coupled waveguides. Moreover, we demonstrate that, a judicious choice of the nonreciprocity in this same geometry can lead to perfect polarization splitting.
Resumo:
For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) in use today. Several new transistor designs, some designed and built here at Michigan Tech, involve electrons tunneling their way through arrays of nanoparticles. We use a multi-scale approach to model these devices and study their behavior. For investigating the tunneling characteristics of the individual junctions, we use a first-principles approach to model conduction between sub-nanometer gold particles. To estimate the change in energy due to the movement of individual electrons, we use the finite element method to calculate electrostatic capacitances. The kinetic Monte Carlo method allows us to use our knowledge of these details to simulate the dynamics of an entire device— sometimes consisting of hundreds of individual particles—and watch as a device ‘turns on’ and starts conducting an electric current. Scanning tunneling microscopy (STM) and the closely related scanning tunneling spectroscopy (STS) are a family of powerful experimental techniques that allow for the probing and imaging of surfaces and molecules at atomic resolution. However, interpretation of the results often requires comparison with theoretical and computational models. We have developed a new method for calculating STM topographs and STS spectra. This method combines an established method for approximating the geometric variation of the electronic density of states, with a modern method for calculating spin-dependent tunneling currents, offering a unique balance between accuracy and accessibility.
Resumo:
The goals of this project are to develop a Reactive Air Brazing (RAB) alloy and process for joining Barium strontium cobalt ferrite (BSCF), and to develop a fundamental understanding of the wettability and microstructral development due to reaction kinetics in BSCF/Ag-MexOy systems.
Resumo:
The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.
Resumo:
Recent advances in high temperature electrochemical devices have prompted research into potential materials for component fabrication.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
AIM: The purpose of this study was to systematically review the literature on the survival rates of palatal implants, Onplants((R)), miniplates and mini screws. MATERIAL AND METHODS: An electronic MEDLINE search supplemented by manual searching was conducted to identify randomized clinical trials, prospective and retrospective cohort studies on palatal implants, Onplants((R)), miniplates and miniscrews with a mean follow-up time of at least 12 weeks and of at least 10 units per modality having been examined clinically at a follow-up visit. Assessment of studies and data abstraction was performed independently by two reviewers. Reported failures of used devices were analyzed using random-effects Poisson regression models to obtain summary estimates and 95% confidence intervals (CI) of failure and survival proportions. RESULTS: The search up to January 2009 provided 390 titles and 71 abstracts with full-text analysis of 34 articles, yielding 27 studies that met the inclusion criteria. In meta-analysis, the failure rate for Onplants((R)) was 17.2% (95% CI: 5.9-35.8%), 10.5% for palatal implants (95% CI: 6.1-18.1%), 16.4% for miniscrews (95% CI: 13.4-20.1%) and 7.3% for miniplates (95% CI: 5.4-9.9%). Miniplates and palatal implants, representing torque-resisting temporary anchorage devices (TADs), when grouped together, showed a 1.92-fold (95% CI: 1.06-2.78) lower clinical failure rate than miniscrews. CONCLUSION: Based on the available evidence in the literature, palatal implants and miniplates showed comparable survival rates of >or=90% over a period of at least 12 weeks, and yielded superior survival than miniscrews. Palatal implants and miniplates for temporary anchorage provide reliable absolute orthodontic anchorage. If the intended orthodontic treatment would require multiple miniscrew placement to provide adequate anchorage, the reliability of such systems is questionable. For patients who are undergoing extensive orthodontic treatment, force vectors may need to be varied or the roots of the teeth to be moved may need to slide past the anchors. In this context, palatal implants or miniplates should be the TADs of choice.
Resumo:
OBJECTIVE: The aim of this study was to determine the influence of polyvinyl chloride (PVC) wrapping on the performance of two laser fluorescence devices (LF and LFpen) by assessing tooth occlusal surfaces. BACKGROUND DATA: Protection of their tips may influence LF measurements. To date there are no studies evaluating the influence of this protection on the performance of the LFpen on permanent teeth, or comparing it to the original LF device. MATERIALS AND METHODS: One hundred nineteen permanent molars were assessed by two experienced dentists using the LF and the LFpen devices, both with and without PVC wrapping. The teeth were histologically prepared and assessed for caries extension. RESULTS: The LF values with and without PVC wrapping were significantly different. For both LF devices, the sensitivity and accuracy were lower when the PVC wrapping was used. The specificity was statistically significantly higher for the LFpen with PVC. No difference was found between the areas under the ROC curves with and without PVC wrapping. The ICC showed excellent interexaminer agreement. The Bland and Altman method showed a range between the upper and the lower limits of agreement of 63.4 and 57.8 units for the LF device, and 49.4 and 74.2 for the LFpen device, with and without PVC wrapping, respectively. CONCLUSIONS: We found an influence of the PVC wrapping on the performance of the LF and LFpen devices. However, since its influence on detection of occlusal caries lesions is considered for, the use of one PVC layer is suggested to avoid cross-contamination in clinical practice.
Resumo:
Future generations of mobile communication devices will serve more and more as multimedia platforms capable of reproducing high quality audio. In order to achieve a 3-D sound perception the reproduction quality of audio via headphones can be significantly increased by applying binaural technology. To be independent of individual head-related transfer functions (HRTFs) and to guarantee a good performance for all listeners, an adaptation of the synthesized sound field to the listener's head movements is required. In this article several methods of head-tracking for mobile communication devices are presented and compared. A system for testing the identified methods is set up and experiments are performed to evaluate the prosand cons of each method. The implementation of such a device in a 3-D audio system is described and applications making use of such a system are identified and discussed.