957 resultados para Local binary pattern
Resumo:
This paper describes the relative influence of: (i) landscape scale environmental and hydrological factors; (ii) local scale environmental conditions including recent flow history, and; (iii) spatial effects (proximity of sites to one another) on the spatial and temporal variation in local freshwater fish assemblages in the Mary River, south-eastern Queensland, Australia. Using canonical correspondence analysis, each of the three sets of variables explained similar amounts of variation in fish assemblages (ranging from 44 to 52%). Variation in fish assemblages was partitioned into eight unique components: pure environmental, pure spatial, pure temporal, spatially structured environmental variation, temporally structured environmental variation, spatially structured temporal variation, the combined spatial/temporal component of environmental variation and unexplained variation. The total variation explained by these components was 65%. The combined spatial/temporal/environmental component explained the largest component (30%) of the total variation in fish assemblages, whereas pure environmental (6%), temporal (9%) and spatial (2%) effects were relatively unimportant. The high degree of intercorrelation between the three different groups of explanatory variables indicates that our understanding of the importance to fish assemblages of hydrological variation (often highlighted as the major structuring force in river systems) is dependent on the environmental context in which this role is examined.
Resumo:
The use of the curse or cure dichotomy to frame a discussion around the impacts of mining is an oversimplification, not least in the emphasis on one or the other (as opposed to curse and cure). It is, however, a potent trope for engaging critically with the consequences of mining not only in narrow economic terms but also in regard to political, social and environmental costs and benefits. Further, as Goodman and Worth (2008: 201) point out, to engage with the resource curse or cure question is to also engage more broadly with “the internal contradictions of capitalist development” as evident, for example, in divisions “between those who benefit from and those who bear the costs of accumulation” and the many conflicts—political, social, economic, environmental—attending resource extraction. It is in this sense that this volume mobilises the ‘resource curse or cure?’ motif.
Resumo:
This chapter examines local community experiences, understandings and changes attending the presence of mining activity, in particular as occurred in the Shire of Ravensthorpe in the South West of Western Australia (WA). It does so by drawing on an extensive ethnographic study spanning the development, opening, and closure of BHP Billiton’s Ravensthorpe Nickel Operation (RNO). Given that the negative consequences of mining activity are most evident and complex at the local level, it is crucial that we understand and address how communities (and the individuals and families who are both part of and are shaped by communities) experience the impacts of mining. Though difficult to measure, social and cultural dimensions of mining at the local scale, as this chapter demonstrates, are central to our understanding of mining as a curse or cure.
Resumo:
Information on the variation available for different plant attributes has enabled germplasm collections to be effectively utilised in plant breeding. A world sourced collection of white clover germplasm has been developed at the White Clover Resource Centre at Glen Innes, New South Wales. This collection of 439 accessions was characterised under field conditions as a preliminary study of the genotypic variation for morphological attributes; stolon density, stolon branching, number of nodes. number of rooted nodes, stolon thickness, internode length, leaf length, plant height and plant spread, together with seasonal herbage yield. Characterisation was conducted on different batches of germplasm (subsets of accessions taken from the complete collection) over a period of five years. Inclusion of two check cultivars, Haifa and Huia, in each batch enabled adjustment of the characterisation data for year effects and attribute-by-year interaction effects. The component of variance for seasonal herbage yield among batches was large relative to that for accessions. Accession-by-experiment and accession-by-season interactions for herbage yield were not detected. Accession mean repeatability for herbage yield across seasons was intermediate (0.453). The components of genotypic variance among accessions for all attributes, except plant height, were larger than their respective standard errors. The estimates of accession mean repeatability for the attributes ranged from low (0.277 for plant height) to intermediate (0.544 for internode length). Multivariate techniques of clustering and ordination were used to investigate the diversity present among the accessions in the collection. Both cluster analysis and principal component analysis suggested that seven groups of accessions existed. It was also proposed from the pattern analysis results that accessions from a group characterised by large leaves, tall plants and thick stolons could be crossed with accessions from a group that had above average stolon density and stolon branching. This material could produce breeding populations to be used in recurrent selection for the development of white clover cultivars for dryland summer moisture stress environments in Australia. The germplasm collection was also found to be deficient in genotypes with high stolon density, high number of branches high number of rooted nodes and large leaves. This warrants addition of new germplasm accessions possessing these characteristics to the present germplasm collection.
Resumo:
The location of previously unseen and unregistered individuals in complex camera networks from semantic descriptions is a time consuming and often inaccurate process carried out by human operators, or security staff on the ground. To promote the development and evaluation of automated semantic description based localisation systems, we present a new, publicly available, unconstrained 110 sequence database, collected from 6 stationary cameras. Each sequence contains detailed semantic information for a single search subject who appears in the clip (gender, age, height, build, hair and skin colour, clothing type, texture and colour), and between 21 and 290 frames for each clip are annotated with the target subject location (over 11,000 frames are annotated in total). A novel approach for localising a person given a semantic query is also proposed and demonstrated on this database. The proposed approach incorporates clothing colour and type (for clothing worn below the waist), as well as height and build to detect people. A method to assess the quality of candidate regions, as well as a symmetry driven approach to aid in modelling clothing on the lower half of the body, is proposed within this approach. An evaluation on the proposed dataset shows that a relative improvement in localisation accuracy of up to 21 is achieved over the baseline technique.
Resumo:
Background: Hospital disaster resilience can be defined as a hospital’s ability to resist, absorb, and respond to the shock of disasters while maintaining critical functions, and then to recover to its original state or adapt to a new one. This study aims to explore the status of resilience among tertiary hospitals in Shandong Province, China. Methods: A stratified random sample (n = 50) was derived from tertiary A, tertiary B, and tertiary C hospitals in Shandong Province, and was surveyed by questionnaire. Data on hospital characteristics and 8 key domains of hospital resilience were collected and analysed. Variables were binary, and analysed using descriptive statistics such as frequencies. Results: A response rate of 82% (n = 41) was attained. Factor analysis identified four key factors from eight domains which appear to reflect the overall level of disaster resilience. These were hospital safety, disaster management mechanisms, disaster resources and disaster medical care capability. The survey demonstrated that in regard to hospital safety, 93% had syndromic surveillance systems for infectious diseases and 68% had evaluated their safety standards. In regard to disaster management mechanisms, all had general plans, while only 20% had specific plans for individual hazards. 49% had a public communication protocol and 43.9% attended the local coordination meetings. In regard to disaster resources, 75.6% and 87.5% stockpiled emergency drugs and materials respectively, while less than a third (30%) had a signed Memorandum of Understanding with other hospitals to share these resources. Finally in regard to medical care, 66% could dispatch an on-site medical rescue team, but only 5% had a ‘portable hospital’ function and 36.6% and 12% of the hospitals could surge their beds and staff capacity respectively. The average beds surge capacity within 1 day was 13%. Conclusions: This study validated the broad utility of a framework for understanding and measuring the level of hospital resilience. The survey demonstrated considerable variability in disaster resilience arrangements of tertiary hospitals in Shandong province, and the difference between tertiary A hospitals and tertiary B hospitals was also identified in essential areas.
Resumo:
There is a continuous quest for developing electrochromic (EC)transition metal oxides (TMOs) with increased coloration efficiency. As emerging TMOs, Nb2O5 films, even those of ordered anodized nanochannels, have failed to produce the required EC performance for practical applications. This is attributed to limitations presented by its relatively wide bandgap and low capacity for accommodating ions. To overcome such issues, MoO3 was electrodeposited onto Nb2O5 nanochannelled films as homogeneously conformal and stratified α-MoO3 coatings of different thickness. The EC performance of the resultant MoO3 coated Nb2O5 binary system was evaluated. The system exhibited a coloration efficiency of 149.0 cm2 C−1, exceeding that of any previous reports on MoO3 and Nb2O5 individually or their compounds. The enhancement was ascribed to a combination of the reduced effective bandgap of the binary system, the increased intercalation probability from the layered α-MoO3 coating, and a high surface-tovolume ratio, while the Nb2O5 nanochannelled templates provided stability and low impurity pathways for charge transfer to occur.
Resumo:
The term ‘Global Hollywood’ describes the international reach of the major Hollywood studios, and the internationalisation of financing, production, distribution and exhibition of films made by the majors, or by their subsidiaries and partners. In this article we describe how one place, the Gold Coast in the Australian state of Queensland, became a ‘Local Hollywood’ or a regular location for such international film and television production.
Resumo:
The possibility of initial stage control of the elemental composition and core/shell structure of binary SiC quantum dots by optimizing temporal variation of Si and C incoming fluxes and surface temperatures is shown via hybrid numerical simulations. Higher temperatures and influxes encourage the formation of a stoichiometric outer shell over a small carbon-enriched core, whereas lower temperatures result in a larger carbon-enriched core, Si-enriched undershell, and then a stoichiometric SiC outer shell. This approach is generic and is applicable to a broad range of semiconductor materials and nanofabrication techniques. © 2007 American Institute of Physics.
Resumo:
Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.
Resumo:
The kinetics of saturation of Ni catalyst nanoparticle patterns of the three different degrees of order, used as a model for the growth of carbon nanotips on Si, is investigated numerically using a complex model that involves surface diffusion and ion motion equations. It is revealed that Ni catalyst patterns of different degrees of order, with Ni nanoparticle sizes up to 12.5 nm, exhibit different kinetics of saturation with carbon on the Si surface. It is shown that in the cases examined (surface coverage in the range of 1-50%, highly disordered Ni patterns) the relative pattern saturation factor calculated as the ratio of average incubation times for the processes conducted in the neutral and ionized gas environments reaches 14 and 3.4 for Ni nanoparticles of 2.5 and 12.5 nm, respectively. In the highly ordered Ni patterns, the relative pattern saturation factor reaches 3 for nanoparticles of 2.5 nm and 2.1 for nanoparticles of 12.5 nm. Thus, more simultaneous saturation of Ni catalyst nanoparticles of sizes in the range up to 12.5 nm, deposited on the Si substrate, can be achieved in the low-temperature plasma environment than with the neutral gas-based process.
Resumo:
Angular distribution of microscopic ion fluxes around nanotubes arranged into a dense ordered pattern on the surface of the substrate is studied by means of multiscale numerical simulation. The Monte Carlo technique was used to show that the ion current density is distributed nonuniformly around the carbon nanotubes arranged into a dense rectangular array. The nonuniformity factor of the ion current flux reaches 7 in dense (5× 1018 m-3) plasmas for a nanotube radius of 25 nm, and tends to 1 at plasma densities below 1× 1017 m-3. The results obtained suggest that the local density of carbon adatoms on the nanotube side surface, at areas facing the adjacent nanotubes of the pattern, can be high enough to lead to the additional wall formation and thus cause the single- to multiwall structural transition, and other as yet unexplained nanoscience phenomena.
Resumo:
We report the study of the thermal transport management of monolayer graphene allotrope nanoribbons (size ∼20 × 4 nm2) by the modulation of their structures via molecular dynamics simulations. The thermal conductivity of graphyne (GY)-like geometries is observed to decrease monotonously with increasing number of acetylenic linkages between adjacent hexagons. Strikingly, by incorporating those GY or GY-like structures, the thermal performance of graphene can be effectively engineered. The resulting hetero-junctions possess a sharp local temperature jump at the interface, and show a much lower effective thermal conductivity due to the enhanced phonon–phonon scattering. More importantly, by controlling the percentage, type and distribution pattern of the GY or GY-like structures, the hetero-junctions are found to exhibit tunable thermal transport properties (including the effective thermal conductivity, interfacial thermal resistance and rectification). This study provides a heuristic guideline to manipulate the thermal properties of 2D carbon networks, ideal for application in thermoelectric devices with strongly suppressed thermal conductivity.
Resumo:
State and local governments frequently look to flagship cultural projects to improve the city image and catalyze tourism but, in the process, often overlook their potential to foster local arts development. To better understand this role, the article examines if and how cultural institutions in Los Angeles and San Francisco attract and support arts-related activity. The analysis reveals that cultural flagships have mixed success in generating arts-based development and that their ability may be improved through attention to the local context, facility and institutional characteristics, and the approach of the sponsoring agencies. Such knowledge is useful for planners to enhance their revitalization efforts, particularly as the economic development potential of arts organizations and artists has become more apparent.
Resumo:
Australian forestry plantations have doubled in the past 15 years, with rural communities harbouring a diverse range of positive and negative of economic, environmental and social impacts – the so-called triple bottom line (TBL). Utilising two Australian rural communities in Eden/Gippsland and Tasmania as qualitative case studies, this research explores how 23 non-forestry affiliated rural residents perceived and experienced the TBL economic, environmental and social impacts of plantation forestry. Residents criticised the economic plantation forestry benefits because of lengthy periods of inactivity and limited local employment, explaining that their community was reliant on the industry yet the promised economic benefits had never fully materialised. There was a sense the industry ‘plant and walk away.’ Residents were concerned about the environment impact on water quality, water tables and fire hazards, although they praised plantation forestry for carbon sequestering, eradicating erosion and water run-off. Negative social impacts were described, specifically how the land-use change from farming to forestry had significantly reduced the local population, employment and need for services. Natural resource management and communication strategies are offered, derived from non-forestry affiliated rural resident perspectives on how best to ensure sustainable forest development in their community.