903 resultados para Linux kernel
Resumo:
In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations
Resumo:
We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long-range interactions between dislocations. In light of this result, we revise statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical simulations and experimental data.
Resumo:
We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computations performed by other methods. Also, we discuss the ambiguities in the regularization procedure and their physical consequences.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.
Resumo:
Uniform-price assignment games are introduced as those assignment markets with the core reduced to a segment. In these games, for all active agents, competitive prices are uniform although products may be non-homogeneous. A characterization in terms of the assignment matrix is given. The only assignment markets where all submarkets are uniform are the Bohm-Bawerk horse markets. We prove that for uniform-price assignment games the kernel, or set of symmetrically-pairwise bargained allocations, either coincides with the core or reduces to the nucleolus
Resumo:
[cat] En el domini dels jocs bilaterals d’assignació, es presenta una axiomàtica del nucleolus com l´unica solució que compleix les propietats de consistència respecte del joc derivat definit per Owen (1992) i monotonia de les queixes dels sectors respecte de la seva cardinalitat. Com a conseqüència obtenim una caracterització geomètrica del nucleolus mitjançant una propietat de bisecció més forta que la que satisfan els punts del kernel (Maschler et al, 1979).
Resumo:
[cat] Aquest treball tracta d’extendre la noció d’equilibri simètric de negociació bilateral introduït per Rochford (1983) a jocs d’assignació multilateral. Un pagament corresponent a un equilibri simètric de negociación multilateral (SMB) és una imputación del core que garanteix que qualsevol agent es troba en equilibri respecte a un procés de negociación entre tots els agents basat en allò que cadascun d’ells podria rebre -i fer servir com a amenaça- en un ’matching’ òptim diferent al que s’ha format. Es prova que, en el cas de jocs d’assignació multilaterals, el conjunt de SMB és sempre no buit i que, a diferència del cas bilateral, no sempre coincideix amb el kernel (Davis and Maschler, 1965). Finalment, responem una pregunta oberta per Rochford (1982) tot introduïnt un conjunt basat en la idea de kernel, que, conjuntament amb el core, ens permet caracteritzar el conjunt de SMB.
Resumo:
In this paper we propose an innovative methodology for automated profiling of illicit tablets bytheir surface granularity; a feature previously unexamined for this purpose. We make use of the tinyinconsistencies at the tablet surface, referred to as speckles, to generate a quantitative granularity profileof tablets. Euclidian distance is used as a measurement of (dis)similarity between granularity profiles.The frequency of observed distances is then modelled by kernel density estimation in order to generalizethe observations and to calculate likelihood ratios (LRs). The resulting LRs are used to evaluate thepotential of granularity profiles to differentiate between same-batch and different-batches tablets.Furthermore, we use the LRs as a similarity metric to refine database queries. We are able to derivereliable LRs within a scope that represent the true evidential value of the granularity feature. Thesemetrics are used to refine candidate hit-lists form a database containing physical features of illicittablets. We observe improved or identical ranking of candidate tablets in 87.5% of cases when granularityis considered.
Resumo:
This paper introduces a nonlinear measure of dependence between random variables in the context of remote sensing data analysis. The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel method for evaluating statistical dependence. HSIC is based on computing the Hilbert-Schmidt norm of the cross-covariance operator of mapped samples in the corresponding Hilbert spaces. The HSIC empirical estimator is very easy to compute and has good theoretical and practical properties. We exploit the capabilities of HSIC to explain nonlinear dependences in two remote sensing problems: temperature estimation and chlorophyll concentration prediction from spectra. Results show that, when the relationship between random variables is nonlinear or when few data are available, the HSIC criterion outperforms other standard methods, such as the linear correlation or mutual information.
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
In this work, the calcium-induced aggregation of phosphatidylserine liposomes is probed by means of the analysis of the kinetics of such process as well as the aggregate morphology. This novel characterization of liposome aggregation involves the use of static and dynamic light-scattering techniques to obtain kinetic exponents and fractal dimensions. For salt concentrations larger than 5 mM, a diffusion-limited aggregation regime is observed and the Brownian kernel properly describes the time evolution of the diffusion coefficient. For slow kinetics, a slightly modified multiple contact kernel is required. In any case, a time evolution model based on the numerical resolution of Smoluchowski's equation is proposed in order to establish a theoretical description for the aggregating system. Such a model provides an alternative procedure to determine the dimerization constant, which might supply valuable information about interaction mechanisms between phospholipid vesicles.
Resumo:
We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multilayer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques.
Resumo:
In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.