Deep learning via semi-supervised embedding
Data(s) |
2008
|
---|---|
Resumo |
We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multilayer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques. |
Identificador |
http://serval.unil.ch/?id=serval:BIB_C1D175E7D9BE doi:10.1145/1390156.1390303 isbn:978-1-60558-205-4 |
Idioma(s) |
en |
Publicador |
ACM 2008 Article |
Fonte |
Proceedings of the 25th international conference on Machine learning |
Tipo |
info:eu-repo/semantics/conferenceObject inproceedings |