Deep learning via semi-supervised embedding


Autoria(s): Weston J.; Ratle F.; Collober R.
Data(s)

2008

Resumo

We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multilayer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques.

Identificador

http://serval.unil.ch/?id=serval:BIB_C1D175E7D9BE

doi:10.1145/1390156.1390303

isbn:978-1-60558-205-4

Idioma(s)

en

Publicador

ACM 2008 Article

Fonte

Proceedings of the 25th international conference on Machine learning

Tipo

info:eu-repo/semantics/conferenceObject

inproceedings