924 resultados para Learning-Content-System
Resumo:
Aquest projecte vol estudiar la qualitat de les metadades presents en els documents que representen objectes de coneixement LOM (
Resumo:
Literacy and Numeracy for Learning and Life is the national strategy to improve literacy and numeracy standards among children and young people in the education system. This strategy seeks to address significant concerns about how well our young people are developing the literacy and numeracy skills that they will need to participate fully in the education system, to live satisfying and rewarding lives, and to participate as active and informed citizens in our society.
Resumo:
Michigan State University and OER Africa are creating a win-win collaboration of existing organizations for African publishing, localizing, and sharing of teaching and learning materials that fill critical resource gaps in African MSc agriculture curriculum. By the end of the 18-month planning and pilot initiative, African agriculture universities, faculty, students, researchers, NGO leaders, extension staff, and farmers will participate in building AgShare by demonstrating its benefits and outcomes and by building momentum and support for growth.
Resumo:
Smarthistory.org is a proven, sustainable model for open educational resources in the Humanities. We discuss lessons learned during its agile development. Smarthistory.org is a free, creative-commons licensed, multi-media web-book designed as a dynamic enhancement or substitute for the traditional art history textbook. It uses conversation instead of the impersonal voice of the typical textbook in-order to reveal disagreement, emotion, and the experience of looking. The listener remains engaged with both the content and the interaction of the speakers. These conversations model close looking and a willingness to encounter and engage the unfamiliar. Smarthistory takes the inherent dialogic and multimedia nature of the web and uses it as a pedagogical method. This extendable Humanities framework uses an open-source content management system making Smarthistory inexpensive to create, and easy to manage and update. Its chronological timeline/chapter-based format integrates new contributions into a single historical framework, a structure applicable across the Humanities.
Resumo:
Much of the initial work on Open Educational Resources (OER) has inevitably concentrated on how to produce the resources themselves and to establish the idea in the community. It is now eight years since the term OER was first used and more than ten years since the concept of open content was described and a greater focus is now emerging on the way in which OER can influence policy and change the way in which educational systems help people learn. The Open University UK and Carnegie Mellon University are working in partnership on the OLnet (Open Learning Network), funded by The William and Flora Hewlett Foundation with the aims to search out the evidence for use and reuse of OER and to establish a network for information sharing about research in the field. This means both gathering evidence and developing approaches for how to research and understand ways to learn in a more open world, particularly linked to OER, but also looking at other influences.
Resumo:
Recently many OER activities have been getting popular, and users who access those content for informal learning are increasing. Most popular OER must be OCW, which has been proposed and promoted by MIT since 2001. In Japan OCW has been penetrating gradually since 2005. However in terms of formal learning utilization ICT technology has not been so popular yet in Japanese higher education field. In this paper two case studies, one is formal e-Learning using OCW, and the other is portal site of open contents from universities are described
Resumo:
The purpose of this paper is to present an approach for students to have non-traditional learning assessed for credit and introduce a tool that facilitates this process. The OCW Backpack system can connect self-learners with KNEXT assessment services to obtain college credit for prior learning. An ex post facto study based on historical data collected over the past two years at Kaplan University (KU) is presented to validate the portfolio assessment process. Cumulative GPA was compared for students who received experiential credit for learning derived from personal or professional experience with a matched sample of students with no experiential learning credits. The study found that students who received experiential credits perform better than the matched sample students on GPA. The findings validate the KU portfolio assessment process. Additionally, the results support the capability of the OCW Backpack to capture the critical information necessary to evaluate non-traditional learning for university credit.
Resumo:
Personalization in e-learning allows the adaptation of contents, learning strategiesand educational resources to the competencies, previous knowledge or preferences of the student. This project takes a multidisciplinary perspective for devising standards-based personalization capabilities into virtual e-learning environments, focusing on the conceptof adaptive learning itinerary, using reusable learning objects as the basis of the system and using ontologies and semantic web technologies.
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
Hypermedia systems based on the Web for open distance education are becoming increasinglypopular as tools for user-driven access learning information. Adaptive hypermedia is a new direction in research within the area of user-adaptive systems, to increase its functionality by making it personalized [Eklu 961. This paper sketches a general agents architecture to include navigationaladaptability and user-friendly processes which would guide and accompany the student during hislher learning on the PLAN-G hypermedia system (New Generation Telematics Platform to Support Open and Distance Learning), with the aid of computer networks and specifically WWW technology [Marz 98-1] [Marz 98-2]. The PLAN-G actual prototype is successfully used with some informatics courses (the current version has no agents yet). The propased multi-agent system, contains two different types of adaptive autonomous software agents: Personal Digital Agents {Interface), to interacl directly with the student when necessary; and Information Agents (Intermediaries), to filtrate and discover information to learn and to adapt navigation space to a specific student
Resumo:
In This work we present a Web-based tool developed with the aim of reinforcing teaching and learning of introductory programming courses. This tool provides support for teaching and learning. From the teacher's perspective the system introduces important gains with respect to the classical teaching methodology. It reinforces lecture and laboratory sessions, makes it possible to give personalized attention to the student, assesses the degree of participation of the students and most importantly, performs a continuous assessment of the student's progress. From the student's perspective it provides a learning framework, consisting in a help environment and a correction environment, which facilitates their personal work. With this tool students are more motivated to do programming