941 resultados para Lean mass
Resumo:
The impact of future climate change on the glaciers in the Karakoram and Himalaya (KH) is investigated using CMIP5 multi-model temperature and precipitation projections, and a relationship between glacial accumulation-area ratio and mass balance developed for the region based on the last 30 to 40 years of observational data. We estimate that the current glacial mass balance (year 2000) for the entire KH region is -6.6 +/- 1 Gta(-1), which decreases about sixfold to -35 +/- 2 Gta(-1) by the 2080s under the high emission scenario of RCP8.5. However, under the low emission scenario of RCP2.6 the glacial mass loss only doubles to -12 +/- 2 Gta(-1) by the 2080s. We also find that 10.6 and 27 % of the glaciers could face `eventual disappearance' by the end of the century under RCP2.6 and RCP8.5 respectively, underscoring the threat to water resources under high emission scenarios.
Resumo:
We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.
Resumo:
We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Resumo:
We investigate the electronic properties of Germanane and analyze its importance as 2-D channel material in switching devices. Considering two types of morphologies, namely, chair and boat, we study the real band structure, the effective mass variation, and the complex band structure of unstrained Germanane by density-functional theory. The chair morphology turns out to be a more effective channel material for switching devices than the boat morphology. Furthermore, we study the effect of elastic strain, van der Waals force, and vertical electric field on these band structure properties. Due to its very low effective mass with relatively high-energy bandgap, in comparison with the other 2-D materials, Germanane appears to provide superior performance in switching device applications.
Resumo:
We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.
Resumo:
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
Resonant sensors and crystal oscillators for mass detection need to be excited at very high natural frequencies (MHz). Use of such systems to measure mass of biological materials affects the accuracy of mass measurement due to their viscous and/or viscoelastic properties. The measurement limitation of such sensor system is the difficulty in accounting for the ``missing mass'' of the biological specimen in question. A sensor system has been developed in this work, to be operated in the stiffness controlled region at very low frequencies as compared to its fundamental natural frequency. The resulting reduction in the sensitivity due to non-resonant mode of operation of this sensor is compensated by the high resolution of the sensor. The mass of different aged drosophila melanogaster (fruit fly) is measured. The difference in its mass measurement during resonant mode of operation is also presented. That, viscosity effects do not affect the working of this non-resonant mass sensor is clearly established by direct comparison. (C) 2014 AIP Publishing LLC.
Resumo:
We show that the upper bound for the central magnetic field of a super-Chandrasekhar white dwarf calculated by Nityananda and Konar Phys. Rev. D 89, 103017 (2014)] and in the concerned comment, by the same authors, against our work U. Das and B. Mukhopadhyay, Phys. Rev. D 86, 042001 (2012)] is erroneous. This in turn strengthens the argument in favor of the stability of the recently proposed magnetized super-Chandrasekhar white dwarfs. We also point out several other numerical errors in their work. Overall we conclude that the arguments put forth by Nityananda and Konar are misleading.
Resumo:
Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.
Resumo:
Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.
Resumo:
The 2011 outburst of the black hole candidate IGR J17091-3624 followed the canonical track of state transitions along with the evolution of quasi-periodic oscillation (QPO) frequencies before it began exhibiting various variability classes similar to GRS 1915+105. We use this canonical evolution of spectral and temporal properties to determine the mass of IGR J17091-3624, using three different methods: photon index (Gamma)-QPO frequency (nu) correlation, QPO frequency (nu)-time (day) evolution, and broadband spectral modeling based on two-component advective flow (TCAF). We provide a combined mass estimate for the source using a naive Bayes based joint likelihood approach. This gives a probable mass range of 11.8 M-circle dot-13.7 M-circle dot. Considering each individual estimate and taking the lowermost and uppermost bounds among all three methods, we get a mass range of 8.7 M-circle dot-15.6 M-circle dot with 90% confidence. We discuss the possible implications of our findings in the context of two-component accretion flow.
Resumo:
This paper proposes a technique to cause unidirectional ion ejection in a quadrupole ion trap mass spectrometer operated in the resonance ejection mode. In this technique a modified auxiliary dipolar excitation signal is applied to the endcap electrodes. This modified signal is a linear combination of two signals. The first signal is the nominal dipolar excitation signal which is applied across the endcap electrodes and the second signal is the second harmonic of the first signal, the amplitude of the second harmonic being larger than that of the fundamental. We have investigated the effect of the following parameters on achieving unidirectional ion ejection: primary signal amplitude, ratio of amplitude of second harmonic to that of primary signal amplitude, different operating points, different scan rates, different mass to charge ratios and different damping constants. In all these simulations unidirectional ejection of destabilized ions has been successfully achieved. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Glycated hemoglobin (HbA(1c)) is a `gold standard' biomarker for assessing the glycemic index of an individual. HbA(1c) is formed due to nonenzymatic glycosylation at N-terminal valine residue of the P-globin chain. Cation exchange based high performance liquid chromatography (CE HPLC) is mostly used to quantify HbA(1c), in blood sample. A few genetic variants of hemoglobin and post-translationally modified variants of hemoglobin interfere with CE HPLC-based quantification,. resulting in its false positive estimation. Using mass spectrometry, we analyzed a blood sample with abnormally high HbA(1c) (52.1%) in the CE HPLC method. The observed HbA(1c) did not corroborate the blood glucose level of the patient. A mass spectrometry based bottom up proteomics approach, intact globin chain mass analysis, and chemical modification of the proteolytic peptides identified the presence of Hb Beckman, a genetic variant of hemoglobin, in the experimental sample. A similar surface area to charge ratio between HbA(1c) and Hb Beckman might have resulted in the coelution of the variant with HbA(1c) in CE HPLC. Therefore, in the screening of diabetes mellitus through the estimation of HbA(1c), it is important to look for genetic variants of hemoglobin in samples that show abnormally high glycemic index, and HbA(1c) must be estimated using an alternative method. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A lectin from phloem exudates of Luffa acutangula (ridge gourd) was purified on chitin affinity chromatography and characterized for its amino acid sequence and to study the role of tryptophan in its activity. The purified lectin was subjected to various proteolytic digestions, and the resulting peptides were analyzed by liquid chromatography coupled electrospray ionization ion trap mass spectrometer. The peptide precursor ions were fragmented by collision-induced dissociation or electron transfer dissociation experiments, and a manual interpretation of MS/MS was performed to deduce amino acid sequence. This gave rise to almost complete sequence coverage of the lectin which showed high-sequence similarity with deduced sequences of phloem lectins present in the database. Chemical modification of lysine, tyrosine, histidine, arginine, aspartic acid, and glutamic acid residues did not inhibit the hemagglutinating activity. However, the modification of tryptophan residues using N-bromosuccinimide showed the loss of hemagglutinating activity. Additionally, the mapping of tryptophan residues was performed to determine the extent and number of residues modified, which revealed that six residues per molecule were oxidized suggesting their accessibility. The retention of the lectin activity was seen when the modifications were performed in the presence of chitooligosaccharides due to protection of a tryptophan residue (W-102) in the protein. These studies taken together have led to the identification of a particular tryptophan residue (W-102) in the activity of the lectin. (c) 2015 IUBMB Life, 67(12):943-953, 2015