961 resultados para Laplace Equation
Resumo:
Exam questions and solutions in LaTex. Diagrams for the questions are all together in the support.zip file, as .eps files
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam and solutions in LaTex
Resumo:
Exam and solutions in PDF
Resumo:
The MATH2038 (Partial Differential Equations) course, as given in semester 2 2008/9. Syllabus has changed slightly from previous years, as has coursework weighting.
Resumo:
La presente obra está pensada como libro de texto para la asignatura de cálculo de los diferentes estudios de la Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación de la Universidad de Cantabria. A medida que se presenta la teoría se incluye, con objeto de ilustrarla, un buen número de ejemplos sencillos. Cada capítulo finaliza con ejercicios resueltos detalladamente y una relación de ejercicios propuestos, algunos de ellos incluídos en exámen. Se desarrollan cuatro temas fundamentalmente: cálculo vectorial, ecuaciones diferenciales ordinarias, integral de Fourier y transformada de Laplace.
Resumo:
In order to present an estimation of the Internal Rate of Return (IRR) to higher education in Colombia we take advantage of the methodological approach provided by Heckman, Lochner and Todd (2005). Trying to overcome the criticism that surrounds interpretations of the education coefficient of Mincer equations as being the rate of return to investments in education we develop a more structured approach of estimation, which controls for selection bias, includes more accurate measures of labor income and the role of education costs and income taxes. Our results implied a lower rate of return than the ones found in the Colombian literature and show that the Internal Rate of Return for higher education in Colombia lies somewhere between 0.074 and 0.128. The results vary according to the year analyzed and individual’s gender. This last result reinforces considerations regarding gender discrimination in the Colombian labor market.
Resumo:
Resumen basado en el de la publicación
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics
Resumo:
In this paper we consider the 2D Dirichlet boundary value problem for Laplace’s equation in a non-locally perturbed half-plane, with data in the space of bounded and continuous functions. We show uniqueness of solution, using standard Phragmen-Lindelof arguments. The main result is to propose a boundary integral equation formulation, to prove equivalence with the boundary value problem, and to show that the integral equation is well posed by applying a recent partial generalisation of the Fredholm alternative in Arens et al [J. Int. Equ. Appl. 15 (2003) pp. 1-35]. This then leads to an existence proof for the boundary value problem. Keywords. Boundary integral equation method, Water waves, Laplace’s
Resumo:
There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.