1000 resultados para LIFSHITZ POINT
Resumo:
Shoeprint evidence collected from crime scenes can play an important role in forensic investigations. Usually, the analysis of shoeprints is carried out manually and is based on human expertise and knowledge. As well as being error prone, such a manual process can also be time consuming; thus affecting the usability and suitability of shoeprint evidence in a court of law. Thus, an automatic system for classification and retrieval of shoeprints has the potential to be a valuable tool. This paper presents a solution for the automatic retrieval of shoeprints which is considerably more robust than existing solutions in the presence of geometric distortions such as scale, rotation and scale distortions. It addresses the issue of classifying partial shoeprints in the presence of rotation, scale and noise distortions and relies on the use of two local point-of-interest detectors whose matching scores are combined. In this work, multiscale Harris and Hessian detectors are used to select corners and blob-like structures in a scale-space representation for scale invariance, while Scale Invariant Feature Transform (SIFT) descriptor is employed to achieve rotation invariance. The proposed technique is based on combining the matching scores of the two detectors at the score level. Our evaluation has shown that it outperforms both detectors in most of our extended experiments when retrieving partial shoeprints with geometric distortions, and is clearly better than similar work published in the literature. We also demonstrate improved performance in the face of wear and tear. As matter of fact, whilst the proposed work outperforms similar algorithms in the literature, it is shown that achieving good retrieval performance is not constrained by acquiring a full print from a scene of crime as a partial print can still be used to attain comparable retrieval results to those of using the full print. This gives crime investigators more flexibility is choosing the parts of a print to search for in a database of footwear.
Resumo:
Aims: In this paper we aim to investigate the evolution of plasmaproperties and Stokes parameters in photospheric magnetic bright pointsusing 3D magneto-hydrodynamical simulations and radiative diagnostics ofsolar granulation.
Methods: Simulated time-dependent radiationparameters and plasma properties were investigated throughout theevolution of a bright point. Synthetic Stokes profiles for the FeI630.25 nm line were calculated, which also allowed the evolution of theStokes-I line strength and Stokes-V area and amplitude asymmetries to beinvestigated.
Results: Our results are consistent withtheoretical predictions and published observations describing convectivecollapse, and confirm this as the bright point formation process.Through degradation of the simulated data to match the spatialresolution of SOT, we show that high spatial resolution is crucial forthe detection of changing spectro-polarimetric signatures throughout amagnetic bright point's lifetime. We also show that the signaturedownflow associated with the convective collapse process tends towardszero as the radiation intensity in the bright point peaks, because ofthe magnetic forces present restricting the flow of material in the fluxtube.
Resumo:
Re-imagining of the aerial transportation system has become increasingly important as the need for significant environmental and economic efficiency gains has become ever more prevalent. A number of studies have highlighted the benefits of the adoption of air to air refuelling within civil aviation. However, it also opens up the potential for increased flexibility in operations through smaller aircraft, shifting emphasis away from the traditional hub and spoke method of operation towards the more flexible Point to Point operations. It is proposed here that one technology can act as an enabler for the other, realising benefits that neither can realise as a standalone. The impact of an air-toair refuelling enabled point to point system is discussed, and the affect on economic and environmental cost metrics relative to traditional operations evaluated. An idealised airport configuration study shows the difference in fuel burn for point to point networks to vary from -23% to 28% from that of Hub and Spoke depending on the configuration. The sensitive natures of the concepts are further explored in a second study based on real airport configurations. The complex effect of the choice of a Point to Point or Hub and Spoke system on fuel burn, operating cost and revenue potential is highlighted. Fuel burn savings of 15% can be experienced with AAR over traditional refuelling operations, with point to point networks increasing the available seat miles (by approximately 20%) without a proportional increase in operating cost or fuel.
Resumo:
Power has become a key constraint in current nanoscale integrated circuit design due to the increasing demands for mobile computing and a low carbon economy. As an emerging technology, an inexact circuit design offers a promising approach to significantly reduce both dynamic and static power dissipation for error tolerant applications. Although fixed-point arithmetic circuits have been studied in terms of inexact computing, floating-point arithmetic circuits have not been fully considered although require more power. In this paper, the first inexact floating-point adder is designed and applied to high dynamic range (HDR) image processing. Inexact floating-point adders are proposed by approximately designing an exponent subtractor and mantissa adder. Related logic operations including normalization and rounding modules are also considered in terms of inexact computing. Two HDR images are processed using the proposed inexact floating-point adders to show the validity of the inexact design. HDR-VDP is used as a metric to measure the subjective results of the image addition. Significant improvements have been achieved in terms of area, delay and power consumption. Comparison results show that the proposed inexact floating-point adders can improve power consumption and the power-delay product by 29.98% and 39.60%, respectively.
Resumo:
Power has become a key constraint in nanoscale inte-grated circuit design due to the increasing demands for mobile computing and higher integration density. As an emerging compu-tational paradigm, an inexact circuit offers a promising approach to significantly reduce both dynamic and static power dissipation for error-tolerant applications. In this paper, an inexact floating-point adder is proposed by approximately designing an exponent sub-tractor and mantissa adder. Related operations such as normaliza-tion and rounding are also dealt with in terms of inexact computing. An upper bound error analysis for the average case is presented to guide the inexact design; it shows that the inexact floating-point adder design is dependent on the application data range. High dynamic range images are then processed using the proposed inexact floating-point adders to show the validity of the inexact design; comparison results show that the proposed inexact floating-point adders can improve the power consumption and power-delay product by 29.98% and 39.60%, respectively.
Resumo:
BACKGROUND: Antibiotic dosing in neonates varies between countries and centres, suggesting suboptimal exposures for some neonates. We aimed to describe variations and factors influencing the variability in the dosing of frequently used antibiotics in European NICUs to help define strategies for improvement.
METHODS: A sub-analysis of the European Study of Neonatal Exposure to Excipients point prevalence study was undertaken. Demographic data of neonates receiving any antibiotic on the study day within one of three two-week periods from January to June 2012, the dose, dosing interval and route of administration of each prescription were recorded. The British National Formulary for Children (BNFC) and Neofax were used as reference sources. Risk factors for deviations exceeding ±25% of the relevant BNFC dosage recommendation were identified by multivariate logistic regression analysis.
RESULTS: In 89 NICUs from 21 countries, 586 antibiotic prescriptions for 342 infants were reported. The twelve most frequently used antibiotics - gentamicin, penicillin G, ampicillin, vancomycin, amikacin, cefotaxime, ceftazidime, meropenem, amoxicillin, metronidazole, teicoplanin and flucloxacillin - covered 92% of systemic prescriptions. Glycopeptide class, GA <32 weeks, 5(th) minute Apgar score <5 and geographical region were associated with deviation from the BNFC dosage recommendation. While the doses of penicillins exceeded recommendations, antibiotics with safety concerns followed (gentamicin) or were dosed below (vancomycin) recommendations.
CONCLUSIONS: The current lack of compliance with existing dosing recommendations for neonates needs to be overcome through the conduct of well-designed clinical trials with a limited number of antibiotics to define pharmacokinetics/pharmacodynamics, efficacy and safety in this population and by efficient dissemination of the results.
Resumo:
An SVD processor system is presented in which each processing element is implemented using a simple CORDIC unit. The internal recursive loop within the CORDIC module is exploited, with pipelining being used to multiplex the two independent micro-rotations onto a single CORDIC processor. This leads to a high performance and efficient hardware architecture. In addition, a novel method for scale factor correction is presented which only need be applied once at the end of the computation. This also reduces the computation time. The net result is an SVD architecture based on a conventional CORDIC approach, which combines high performance with high silicon area efficiency.
Resumo:
The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.
Resumo:
This paper describes a study that used video materials and visits to an airport to prepare children on the autism spectrum for travel by plane. Twenty parents and carers took part in the study with children aged from 3 to 16 years. The authors explain that the methods they used were based on Applied Behaviour Analysis (ABA) research; a video modeling technique called Point-Of-View Video-priming and during visits to an airport they used procedures known as Natural Environment Teaching. The findings suggest that using video and preparing children by taking them through what is likely to happen in the real environment when they travel by plane is effective and the authors suggest these strategies could be used to support children with autism with other experiences they need or would like to engage in such as visits to the dentist or hairdressers and access to leisure centres and other public spaces.
Resumo:
The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.