931 resultados para Immunogenic cell death


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies. © 2007 Springer Science+Business Media, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We hypothesized that normal human mesothelial cells acquire resistance to asbestos-induced toxicity via induction of one or more epidermal growth factor receptor (EGFR) - linked survival pathways (phosphoinositol-3-kinase/AKT/ mammalian target of rapamycin and extracellular signal - regulated kinase [ERK] 1/2) during simian virus 40 (SV40) transformation and carcinogenesis. Both isolated HKNM-2 mesothelial cells and a telomerase-immortalized mesothelial line (LP9/TERT-1) were more sensitive to crocidolite asbestos toxicity than an SV40 Tag-immortalized mesothelial line (MET5A) and malignant mesothelioma cell lines (HMESO and PPM Mill). Whereas increases in phosphorylation of AKT (pAKT) were observed in MET5A cells in response to asbestos, LP9/TERT-1 cells exhibited dose-related decreases in pAKT levels. Pretreatment with an EGFR phosphorylation or mitogen-activated protein kinase kinase 1/2 inhibitor abrogated asbestos-induced phosphorylated ERK (pERK) 1/2 levels in both LP9/TERT-1 and MET5A cells as well as increases in pAKT levels in MET5A cells. Transient transfection of small interfering RNAs targeting ERK1, ERK2, or AKT revealed that ERK1/2 pathways were involved in cell death by asbestos in both cell lines. Asbestos-resistant HMESO or PPM Mill cells with high endogenous levels of ERKs or AKT did not show dose-responsive increases in pERK1/ERK1, pERK2/ERK2, or pAKT/AKT levels by asbestos. However, small hairpin ERK2 stable cell lines created from both malignant mesothelioma lines were more sensitive to asbestos toxicity than shERK1 and shControl lines, and exhibited unique, tumor-specific changes in endogenous cell death - related gene expression. Our results suggest that EGFR phosphorylation is causally linkedto pERK and pAKT activation by asbestos in normal and SV40 Tag - immortalized human mesothelial cells. They also indicate that ERK2 plays a role in modulating asbestos toxicity by regulating genes critical to cell injury and survival that are differentially expressed in human mesotheliomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X(L), pro-apoptotic Bax and Bad). METHODS: Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (Western immunoblots, densitometry, immunoelectron microscopy). RESULTS: Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X(L) and Bax, but not Bcl-2 or Bad, was identified in control distal cells. Bcl-X(L) and Bax had nonsignificant increases (P> 0.05) in these cells. Bcl-2, Bax, and Bcl-X(L), but not Bad, were endogenously expressed in control proximal cells. Bcl-X(L) was significantly decreased in treated proximal cultures (P < 0.05), with Bax and Bcl-2 having nonsignificant increases (P> 0.05). Immunoelectron microscopy localization indicated that control and treated but surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X(L) from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-X(L) expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. CONCLUSION: The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X(L) in proximal cells, as well as translocation of Bcl-X(L) protein to mitochondria within the surviving distal cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the past decade, an attempt has been made by many research groups to define the roles of the growing number of Bcl-2 gene family proteins in the apoptotic process. The Bcl-2 family consists of pro-apoptotic (or cell death) and anti-apoptotic (or cell survival) genes and it is the balance in expression between these gene lineages that may determine the death or survival of a cell. The majority of studies have analysed the role/s of the Bcl-2 genes in cancer development. Equally important is their role in normal tissue development, homeostasis and non-cancer disease states. Bcl-2 is crucial for normal development in the kidney, with a deficiency in Bcl-2 producing such malformation that renal failure and death result. As a corollary, its role in renal disease states in the adult has been sought. Ischaemia is one of the most common causes of both acute and chronic renal failure. The section of the kidney that is most susceptible to ischaemic damage is the outer zone of the outer medulla. Within this zone the proximal tubules are most sensitive and often die by necrosis or desquamate. In the distal nephron, apoptosis is the more common form of cell death. Recent results from our laboratory have indicated that ischaemia-induced acute renal failure is associated with up-regulation of two anti-apoptotic Bcl-2 proteins (Bcl-2 and Bcl-XL) in the damaged distal tubule and occasional up-regulation of Bax in the proximal tubule. The distal tubule is a known reservoir for several growth factors important to renal growth and repair, such as insulin-like growth factor-1 (IGF-1) and epidermal growth factor (EGF). One of the likely possibilities for the anti-cell death action of the Bcl-2 genes is that the protected distal cells may be able to produce growth factors that have a further reparative or protective role via an autocrine mechanism in the distal segment and a paracrine mechanism in the proximal cells. Both EGF and IGF-1 are also up-regulated in the surviving distal tubules and are detected in the surviving proximal tubules, where these growth factors are not usually synthesized. As a result, we have been using in vitro methods to test: (i) the relative sensitivities of renal distal and proximal epithelial cell populations to injury caused by mechanisms known to act in ischaemia-reperfusion; (ii) whether a Bcl-2 anti-apoptotic mechanism acts in these cells; and (iii) whether an autocrine and/or paracrine growth factor mechanism is initiated. The following review discusses the background to these studies as well as some of our preliminary results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways is responsible for the formation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Altered eicosanoid expression levels are commonly observed during tumour development and progression of a range of malignancies, including non-small cell lung cancer (NSCLC). Arachidonic acid-derived eicosanoids affect a range of biological phenomena to modulate tumour processes such as cell growth, survival, angiogenesis, cell adhesion, invasion and migration and metastatic potential. Numerous studies have demonstrated that eicosanoids modulate NSCLC development and progression, while targeting these pathways has generally been shown to inhibit tumour growth/progression. Modulation of these arachidonic acid-derived pathways for the prevention and/or treatment of NSCLC has been the subject of significant interest over the past number of years, with a number of clinical trials examining the potential of COX and LOX inhibitors in combination with traditional and novel molecular approaches. However, results from these trials have been largely disappointing. Furthermore, enthusiasm for the use of selective COX-2 inhibitors for cancer prevention/treatment waned, due to their association with adverse cardiovascular events in chemoprevention trials. While COX and LOX targeting may both retain promise for NSCLC prevention and/or treatment, there is an urgent need to understand the downstream signalling mechanisms through which these and other arachidonic acid-derived signalling pathways mediate their effects on tumourigenesis. This will allow for development of safer and potentially more effective strategies for NSCLC prevention and/or treatment. Chemoprevention studies with PGI2 analogues have demonstrated considerable promise, while binding to/signalling through PGE2 receptors have also been the subject of interest for NSCLC treatment. In this chapter, the role of the eicosanoid signalling pathways in non-small cell lung cancer will be discussed. In particular, the effect of the eicosanoids on tumour cell proliferation, their roles in induction of cell death, effects on angiogenesis, migration, invasion and their regulation of the immune response will be assessed, with signal transduction pathways involved in these processes also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of NSCLC will be outlined. Elucidating the molecular mechanisms underlying the effects of specific or general arachidonic acid pathway modulators may lead to the design of biologically and pharmacologically targeted therapeutic strategies for NSCLC prevention/treatment, which may be used alone or in combination with conventional therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim To evaluate the effectiveness of novel nanohybrids, composed of silver nanoparticles and nanoscale silicate platelets, to clear Pseudomonas aeruginosa biofilms. Materials & methods The nanohybrids were manufactured from an in situ reduction of silver salts in the silicate platelet dispersion, and then applied to biofilms in vitro and in vivo. Results In reference to the biocidal effects of gentamycin, the nanohybrids mitigated the spreading of the biofilms, and initiated robust cell death and exfoliation from the superficial layers of the biofilms in vitro. In vivo, the nanohybrids exhibited significant therapeutic effects by eliminating established biofilms from infected corneas and promoting the recovery of corneal integrity. Conclusion All of the evaluations indicate the high potency of the newly developed silver nanoparticle/nanoscale silicate platelet nanohybrids for eliminating biofilms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ghrelin is a peptide hormone produced in the stomach and a range of other tissues, where it has endocrine, paracrine and autocrine roles in both normal and disease states. Ghrelin has been shown to be an important growth factor for a number of tumours, including prostate and breast cancers. In this study, we examined the expression of the ghrelin axis (ghrelin and its receptor, the growth hormone secretagogue receptor, GHSR) in endometrial cancer. Ghrelin is expressed in a range of endometrial cancer tissues, while its cognate receptor, GHSR1a, is expressed in a small subset of normal and cancer tissues. Low to moderately invasive endometrial cancer cell lines were examined by RT-PCR and immunoblotting, demonstrating that ghrelin axis mRNA and protein expression correlate with differentiation status of Ishikawa, HEC1B and KLE endometrial cancer cell lines. Moreover, treatment with ghrelin potently stimulated cell proliferation and inhibited cell death. Taken together, these data indicate that ghrelin promotes the progression of endometrial cancer cells in vitro, and may contribute to endometrial cancer pathogenesis and represent a novel treatment target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various studies have been conducted to investigate the effects of impact loading on cartilage damage and chondrocyte death. These have shown that the rate and magnitude of the applied strain significantly influence chondrocyte death, and that cell death occurred mostly in the superficial zone of cartilage suggesting the need to further understand the fundamental mechanisms underlying the chondrocytes death induced at certain levels of strain-rate. To date there is no comprehensive study providing insight on this phenomenon. The aim of this study is to examine the strain-rate dependent behavior of a single chondrocyte using a computational approach based on Finite Element Method (FEM). An FEM model was developed using various mechanical models, which were Standard Neo-Hookean Solid (SnHS), porohyperelastic (PHE) and poroviscohyperelastic (PVHE) to simulate Atomic Force Microscopy (AFM) experiments of chondrocyte. The PVHE showed, it can capture both relaxation and loading rate dependent behaviors of chondrocytes, accurately compared to other models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Ar/O2plasma needle in the induction of A549 cancer cells apoptosis process is studied by means of real-time observation. The entire process of programmed cell death is observed. The typical morphological changes of A549 apoptosis are detected by 4′, 6-diamidino-2-phenylindole staining, for example, chromatin condensation and nuclear fragmentation. Cell viability is determined and quantified by neutral red uptake assay, and the survival rate of A549 from Ar/O2plasmas is presented. Further spectral analysis indicates the reactive species, including O and OH play crucial roles in the cell inactivation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer is a disease of signal transduction in which the dysregulation of the network of intracellular and extracellular signaling cascades is sufficient to thwart the cells finely-tuned biochemical control mechanisms. A keen interest in the mathematical modeling of cell signaling networks and the regulation of signal transduction has emerged in recent years, and has produced a glimmer of insight into the sophisticated feedback control and network regulation operating within cells. In this review, we present an overview of published theoretical studies on the control aspects of signal transduction, emphasizing the role and importance of mechanisms such as ‘ultrasensitivity’ and feedback loops. We emphasize that these exquisite and often subtle control strategies represent the key to orchestrating ‘simple’ signaling behaviors within the complex intracellular network, while regulating the trade-off between sensitivity and robustness to internal and external perturbations. Through a consideration of these apparent paradoxes, we explore how the basic homeostasis of the intracellular signaling network, in the face of carcinogenesis, can lead to neoplastic progression rather than cell death. A simple mathematical model is presented, furnishing a vivid illustration of how ‘control-oriented’ models of the deranged signaling networks in cancer cells may enucleate improved treatment strategies, including patient-tailored combination therapies, with the potential for reduced toxicity and more robust and potent antitumor activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Direct writing melt electrospinning is an additive manufacturing technique capable of the layer-by-layer fabrication of highly ordered 3d tissue engineering scaffolds from micron-diameter fibres. The utility of these scaffolds, however, is limited by the maximum achievable height of controlled fibre deposition, beyond which the structure becomes increasingly disordered. A source of this disorder is charge build-up on the deposited polymer producing unwanted coulombic forces. In this study we introduce a novel melt electrospinning platform with dual voltage power supplies to reduce undesirable charge effects and improve fibre deposition control. We produced and characterised several 90° cross-hatched fibre scaffolds using a range of needle/collector plate voltages. Fibre thickness was found to be sensitive only to overall potential and invariant to specific tip/collector voltage. We also produced ordered scaffolds up to 200 layers thick (fibre spacing 1 mm, diameter 40 μm) and characterised structure in terms of three distinct zones; ordered, semi-ordered and disordered. Our in vitro analysis indicates successful cell attachment and distribution throughout the scaffolds, with little evidence of cell death after seven days. This study demonstrates the importance of electrostatic control for reducing destabilising polymer charge effects and enabling the fabrication of morphologically suitable scaffolds for tissue engineering.