927 resultados para IN-VIVO DIAGNOSIS
Resumo:
Anergic T cells display a marked decrease in their ability to produce IL-2 and to proliferate in the presence of an appropriate antigenic signal. Two nonmutually exclusive classes of models have been proposed to explain the persistence of T cell anergy in vivo. While some reports indicate that anergic T cells have intrinsic defects in signaling pathways or transcriptional activities, other studies suggest that anergy is maintained by environmental "suppressor" factors such as cytokines or Abs. To distinguish between these conflicting hypotheses, we employed the well-characterized bacterial superantigen model system to evaluate in vivo the ability of a trace population of adoptively transferred naive or anergized T cells to proliferate in a naive vs anergic environment upon subsequent challenge. Our data clearly demonstrate that bacterial superantigen-induced T cell anergy is cell autonomous and independent of environmental factors.
Resumo:
Objectives: Dermatophytes are highly specialized fungi which are the most common agents of superficial mycoses in humans and animals. The particular ability of these microorganisms to invade and multiply within keratinized host structures is presumably linked to their secreted keratinolytic activity, which is therefore a major putative virulence attribute of these fungi. The overall adaptation and transcriptional response of dermatophytes during protein degradation and/or infection is largely unknown. Methods: A Trichophyton rubrum cDNA microarray was developed and used for the transcriptional analysis of T. rubrum and Arthroderma benhamiae cells during growth on protein substrates. Moreover, the gene expression profile in A. benhamiae cells was monitored during infection of guinea pigs. Results: T. rubrum and A. benhamiae cells activate a large set of genes encoding secreted endo- and exoproteases during growth on soy and keratin. In addition, other specifically induced factors with potential implication in protein utilization were identified, e.g. multiple transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. Notably however, the protease gene expression profile in the fungal cells during infection was significantly different from the pattern elicited during in vitro growth on keratin. Conclusions: Our results suggest specific functions of individual proteases during infection, which may not be restricted to the degradation of keratin. This first, broad in vivo transcriptional profiling approach in dermatophytes gives new molecular insights into pathogenicity associated adaptation mechanisms that make these microorganisms the most successful causitive agents of superficial mycoses.
Resumo:
An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae plant, Morinda tomentosa, which was used as a model in these studies.
Resumo:
A perda de plantas micropropagadas ocorre, principalmente, pela presença de microrganismos, responsáveis pela morte das plantas no início da cultura ou em seu estabelecimento no campo. O trabalho teve como objetivo a identificação, por taxonomia clássica, e por meio de técnicas moleculares, de fungos presentes nos ápices caulinares de pupunheiras sadias, cultivadas no campo, e a comparação com os fungos isolados, em plantas micropropagadas há dois anos. Os isolados da microbiota fúngica endofítica, das plantas cultivadas in vitro, foram: Fusarium oxysporum, Neotyphodium sp. e Epicoccum nigrum; e das plantas in vivo, foram: Fusarium sp., F. proliferatum, F. oxysporum, Colletotrichum sp., Alternaria gaisen, Neotyphodium sp. e Epicoccum nigrum. As sete espécies de fungos foram reintroduzidas in vitro na planta hospedeira, demonstrando diferentes comportamentos. Neotyphodium sp. e E. nigrum estabeleceram uma interação endofítica com a planta, e as demais comportaram-se como patógenos, diminuindo o desenvolvimento das plântulas em relação às plantas sem inoculação. As espécies endofíticas apresentam potencial para o uso no controle biológico de patógenos de pupunha.
Resumo:
RESUME : Les dermatophytes sont les agents infectieux les plus fréquents responsables de la plupart des mycoses superficielles chez les humains et chez les animaux. Ces infections, dermatophytoses, également appelées tineas ou teignes, sont fréquentes et causent des problèmes de santé publique au niveau mondial. La capacité d'envahir et de progresser au sein des structures kératinisées est probablement liée à la sécrétion de différentes enzymes kératinolytiques, qui sont considérées comme la principale caractéristique liée à la pathogénicité de ces champignons. L'objectif de ma thèse a été premièrement de progresser dans l'identification et la caractérisation des nouvelles protéines sécrétées, afin de mieux comprendre a) la capacité globale des dermatophytes à envahir les structures kératinisées, et b) les différences dans la virulence et la spécificité d'hôte que présentent les espèces étudiées .Pour progresser dans l'identification et la caractérisation de ces nouvelles protéines, les secretomes de six espèces de dermatophytes (Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii et Trichophyton tonsurans) ont été étudiés. Bien qu'il y ait un niveau globalement élevé de similitude entre les protéases sécrétées, les différentes espèces de dermatophytes sécrètent des profiles protéiques distincts lorsqu'elles sont cultivées dans les mêmes conditions de culture, et donc une signature spécifique a pu être associé à chaque espèce. Ces profiles ont été un outil avantageux pour identifier et cartographier les protéines orthologues aux six espèces et ont aussi permit la discrimination d'espèces très proches comme T. tonsurans et T. equinum qui ne peuvent pas être différenciées par l'ADN ribosomal. Ce travail également présente ce que l'on croit être la première identification global des protéines sécrétées par les dermatophytes dans des conditions de culture que incitent l'activité protéolytique extracellulaire. Ce catalogue de protéines, comprenant des endo- and exo- proteases, autres hydrolases, oxydoreductases et des protéines avec fonction inconnue, représente probablement le spectre d'enzymes qui permettent la dégradation des tissus kératinisés en composés qui peuvent être assimilés par le champignon. Les résultats suggèrent qu'un changement écologique pourrait être associé à une expression différentielle des gènes codant les protéines sécrétées, en particulier, les protéases, plutôt qu'à des divergences génétiques au niveau des gènes codant les protéines orthologues. Une sécrétion différentielle des protéines par les dermatophytes pourrait également être responsable de la variabilité inflammatoire qui causent ces agents infectieux chez les différents hôtes. Par conséquent, les protéines identifiées ici sont également importantes pour faire la lumière sur la réponse immunitaire de l'hôte au cours du processus infectieux. SUMMARY : Dermatophytes are the most common infectious agents responsible for superficial mycosis in humans and animals. Dermatophytoses, also called tineas or ringworm, are frequent and cause public health problems worldwide. The secretion of different keratinolytic enzymes is believed to be a key pathogenicity-related characteristic of these fungi. The aim of this work was first to progress in the identification and characterization of novel secreted proteins, in order to better understand a) the overall capability of dermatophytes to invade keratinised structures, and b) differences in virulence and host-specificity of the investigated species. To progress in the identification and characterization of novel proteins, the secretomes from Trichophyton rubrum, Trichophyton violaceum, Trichophyton soudanense, Trichophyton equinum, Arthroderma vanbreuseghemii and Trichophyton tonsurans were studied. Although there is a high global level of similarity among the secreted proteases, different dermatophyte species produce distinct patterns of proteins when grown in the same culture medium, and so a specific signature could be associated to each species. These patterns were useful to identify and map orthologous proteins among the six species, as well as to discriminate the closely related species T. tonsurans and T. equinum, which cannot be differentiated by ribosomal DNA. This work also presents the first in-depth identification of the major proteins secreted by dermatophytes growing under conditions promoting extracellular proteolytic activity. This catalogue of proteins, which include several endo- and exo- proteases, other hydrolases, oxydoreductases, and proteins of unknown function, probably represents the spectrum of enzymes that allow the degradation of keratinized tissues into compounds which can be assimilated by the fungus. The results suggest that ecological switching could be related to a differential expression of genes encoding secreted proteins, particularly, proteases, rather than genetic divergences of the genes encoding orthologous proteins. Differential secretion of proteins by Dermatophyte species could also be responsible for the variable inflammation caused by the infectious agent within the host. Therefore, the proteins here identified are also important to shed light into the immune response of the host during the infection process.
Resumo:
Injection of cells expressing the retroviral superantigen Mls-1 (Mtv-7 sag) into adult Mls-1- mice induces a strong immune response including both T- and B-cell activation. This model was used for studying qualitative aspects of the immune response in normal mice with a defined antigen-presenting cell (the B cell) and without the use of adjuvant. BALB/c mice were injected locally or systemically with Mls-1-expressing spleen cells from Mls-1-congenic BALB.D2 mice. Intravenous injection led to an initially strong expansion of Mls-1-reactive V beta 6+ CD4+ cells mainly in the spleen, to a large degree explained by the trapping of reactive cells, and a rapid down-regulation of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) production, consistent with the proposed tolerogenic property of B cells as antigen-presenting cells. However, these mice developed a slowly appearing but persistent B-cell response dominated by IgG1-producing cells, suggesting a shift in lymphokines produced rather than complete unresponsiveness. Subcutaneous injection into the hind footpad with the same number of cells led to a strong local response in the draining lymph node, characterized by a dramatic increase of V beta 6+ CD4+ T cells, local production of IL-2 and IFN-gamma and a strong but short-lived antibody response dominated by IgG2a-producing cells, characteristic of a T-helper type 1 (Th1) type of response. Both routes of injection led ultimately to deletion of reactive T cells and anergy, as defined by the inability to produce IL-2 upon in vitro stimulation with Mls-1. It is concluded that Mls-1 presented by B cells induces qualitatively different responses in vivo dependent on the route of injection. We propose that the different responses result from the migration of the injected cells to different micro-anatomical sites in the lymphoid tissue. Furthermore, these results suggest that B cells may function as professional antigen-presenting cells in vivo present in an appropriate environment.
Resumo:
Several molecular therapies require the implantation of cells that secrete biotherapeutic molecules and imaging the location and microenvironment of the cellular implant to ascertain its function. We demonstrate noninvasive in vivo magnetic resonance imaging (MRI) of self-assembled microcontainers that are capable of cell encapsulation. Negative contrast was obtained to discern the microcontainer with MRI; positive contrast was obtained in the complete absence of background signal. MRI on a clinical scanner highlights the translational nature of this research. The microcontainers were loaded with cells that were dispersed in an extracellular matrix, and implanted both subcutaneously and in human tumor xenografts in SCID mice. MRI was performed on the implants, and microcontainers retrieved postimplantation showed cell viability both within and proximal to the implant. The microcontainers are characterized by their small size, three dimensionality, controlled porosity, ease of parallel fabrication, chemical and mechanical stability, and noninvasive traceability in vivo.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
Congenital malformations or injuries of the urethra can be treated using existing autologous tissue, but these procedures are sometimes associated with severe complications. Therefore, tissue engineering may be advantageous for generating urethral grafts. We evaluated engineered high-density collagen gel tubes as urethral grafts in 16 male New Zealand white rabbits. The constructs were either acellular or seeded with autologous smooth muscle cells, isolated from an open bladder biopsy. After the formation of a urethral defect by excision, the tissue-engineered grafts were interposed between the remaining urethral ends. No catheter was placed postoperatively. The animals were evaluated at 1 or 3 months by contrast urethrography and histological examination. Comparing the graft caliber to the control urethra at 3 months, a larger caliber was found in the cell-seeded grafts (96.6% of the normal caliber) than in the acellular grafts (42.3%). Histology of acellular and cell-seeded grafts did not show any sign of inflammation, and spontaneous regrowth of urothelium could be demonstrated in all grafts. Urethral fistulae, sometimes associated with stenosis, were observed, which might be prevented by urethral catheter application. High-density collagen gel tubes may be clinically useful as an effective treatment of congenital and acquired urethral pathologies.
Resumo:
OBJECTIVE: (1) To quantify wear of two different denture tooth materials in vivo with two study designs, (2) to relate tooth variables to vertical loss. METHODS: Two different denture tooth materials had been used (experimental material=test; DCL=control). In study 1 (split-mouth, 6 test centers) 60 subjects received complete dentures, in study 2 (two-arm, 1 test center) 29 subjects. In study 1 the mandibular dentures were supported by implants in 33% of the subjects, in study 2 only in 3% of the subjects. Impressions of the dentures were taken and poured with improved stone at baseline and after 6, 12, 18 and 24 months. Each operator evaluated the wear subjectively. Wear analysis was carried out with a laser scanning device. Maximal vertical loss of the attrition zones was calculated for each tooth cusp and tooth. A mixed linear model was used to statistically analyse the logarithmically transformed wear data. RESULTS: Due to drop-outs and unmatchable casts, only 47 subjects of study 1 and 14 of study 2 completed the 2-year recall. Overall, 75% of all teeth present could be analysed. There was no statistically difference in the overall wear between the test and control material for either study 1 or study 2. The relative increase in wear over time was similar in both study designs. However, a strong subject effect and center effect were observed. The fixed factors included in the model (time, tooth, center, etc.) accounted for 43% of the variability, whereas the random subject effect accounted for another 30% of the variability, leaving about 28% of unexplained variability. More wear was consistently recorded in the maxillary teeth compared to the mandibular teeth and in the first molar teeth compared to the premolar teeth and the second molars. Likewise, the supporting cusps showed more wear than the non-supporting cusps. The amount of wear did not depend on whether or not the lower dentures were supported by implants. The subjective wear was correct in about 67% of the cases if it is postulated that a wear difference of 100μm should be subjectively detectable. SIGNIFICANCE: The clinical wear of denture teeth is highly variable with a strong patient effect. More wear can be expected in maxillary denture teeth compared to mandibular teeth, first molars compared to premolars and supported cusps compared to non-supported cusps. Laboratory data on the wear of denture tooth materials may not be confirmed in well-structured clinical trials probably due to the large inter-individual variability.
Resumo:
The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.