993 resultados para Human periodontal ligament fibroblasts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent biomedical applications of natural rubber (NR) latex, mostly in dry membranes, have motivated research into novel, more noble uses of this low-cost biomaterial. In this article, we provide the first report on the fabrication of layer-by-layer (LbL) films of NR alternated with the polyelectrolytes polyethylenimine (PEI) and polyallylamine hydrochloride (PAH). Stable (PAH/NR)n and (PEI/NR)n LbL films displayed similar physicochemical properties, but differed in terms of film morphology according to atomic force microscopy (AFM) and scanning electron microscopy (SEM) data. Most significantly, (PEI/NR)5 LbL films were made of smaller and flattened particles, which were not efficient for the growth and proliferation of normal human fibroblasts (NHF). In contrast, efficient NHF proliferation could be obtained with (PAH/NR)n LbL films, with the fibroblasts exhibiting the expected elongated morphology. Furthermore, cell growth did not occur for cast films of NR, thus demonstrating the suitability of the LbL method for this biologically related application. The differences between the two polyelectrolytes illustrate the importance of the film architecture and morphology, which open the way for exploiting the molecular control inherent in the LbL technique for further applications of NR-containing films. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Some previous studies have shown that gingipains, trypsin-like proteases produced by Porphyromonas gingivalis, up-regulate human beta defensin-2 (HBD-2) mRNA expression through protease-activated receptor-2 (PAR(2)) in gingival epithelial cells. This study aimed at investigating salivary HBD-2 levels and crevicular PAR(2) mRNA expression in human chronic periodontitis and evaluating whether periodontal treatment affected this process. Methods: Salivary and gingival crevicular fluid (GCF) samples were collected from periodontally healthy (control) and chronic periodontitis patients at baseline and 50 days after nonsurgical periodontal treatment. Salivary HBD-2, and GCF TNF-alpha levels were analysed by ELISA, and PAR(2) mRNA at the GCF was evaluated by RT-PCR. Results: P. gingivalis was significantly (p < 0.05) more prevalent in patients with chronic periodontitis when compared to controls. This prevalence decreased after periodontal therapy (p < 0.0001). The control group showed statistically significant lower levels of HBD-2, TNF-alpha, and PAR(2) expression when compared to the chronic periodontitis group. In addition, periodontal treatment significantly reduced PAR(2) expression and HBD-2 levels in chronic periodontitis patients (p < 0.001). Conclusions: Our results suggest that salivary HBD-2 levels and PAR(2) mRNA expression from GCF are higher in subjects with chronic periodontitis than in healthy subjects, and that periodontal treatment decreases both HBD-2 levels and PAR(2) expression. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic sclerosis (SSc) is characterized by fibrosis of the skin and internal organs. The present study was undertaken to examine the effects of ciprofloxacin, a fluoroquinolone antibiotic implicated in matrix remodeling, on dermal and lung fibroblasts obtained from SSc patients. Dermal and lung fibroblasts from SSc patients and healthy subjects were treated with ciprofloxacin. Western blotting was used to analyze protein levels and RT-PCR was used to measure in RNA expression. The pharmacologic inhibitor UO126 was used to block Erk1/2 signaling. SSc dermal fibroblasts demonstrated a significant decrease in collagen type I mRNA and protein levels after antibiotic treatment, while healthy dermal fibroblasts were less sensitive to ciprofloxacin, downregulating collagen only at the protein levels. Connective tissue growth factor (CCN2) gene expression was significantly reduced and matrix metalloproteinase (MMPI) levels were enhanced after ciprofloxacin treatment to a similar extent in healthy and SSc fibroblasts. Ciprofloxacin induced Erk1/2 phosphorylation, and Erk1/2 blockade completely prevented MMP1 upregulation. However. Smad1 and Smad3 activation in response to TGF beta was not affected. The expression of friend leukemia integration factor 1 (Fli1). a transcriptional repressor of collagen, was increased after treatment with ciprofloxacin only in SSc fibroblasts, and this was accompanied by a decrease in the levels of DNA methyltransferase 1 (Dnmt1). Similar effects were observed in SSc-interstitial lung disease (ILD) lung fibroblasts. In summary, our study demonstrates that ciprofloxacin has antifibrotic actions in SSc dermal and lung fibroblasts via the downregulation of Dnmt1, the upregulation of Fli1 and induction of MMPI gene expression via an Erk1/2-dependent mechanism. Thus, our data suggest that ciprofloxacin may he an attractive therapy for SSc skin and lung fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontal disease (PD) is one of the most commonly known human chronic disorders. The relationship between PD and several systemic diseases such as diabetes mellitus (DM) has been increasingly recognized over the past decades. Objective The purpose of this review is to provide the reader with knowledge concerning the relationship between PD and DM. Many articles have been published in the English and Portuguese literature over the last 50 years examining the relationship between these two chronic diseases. Data interpretation is often confounded by varying definitions of DM, PD and different clinical criteria were applied to determine the prevalence, extent and severity of PD, levels of glycemic control and diabetes-related complications. Methods This paper provides a broad overview of the predominant findings from research conducted using the BBO (Bibliografia Brasileira de Odontologia), MEDLINE, LILACS and PubMed for Controlled Trials databases, in English and Portuguese languages published from 1960 to October 2012. Primary research reports on investigations of relationships between DM/DM control, PD/periodontal treatment and PD/DM/diabetes-related complications identified relevant papers and meta-analyses published in this period. Results 7This paper describes the relationship between PD and DM and answers the following questions: 1- The effect of DM on PD, 2- The effects of glycemic control on PD and 3- The effects of PD on glycemic control and on diabetes-related complications. Conclusions The scientific evidence reviewed supports diabetes having an adverse effect on periodontal health and PD having an adverse effect on glycemic control and on diabetes-related complications. Further research is needed to clarify these relationships and larger, prospective, controlled trials with ethnically diverse populations are warranted to establish that treating PD can positively influence glycemic control and possibly reduce the burden of diabetes-related complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knee joint is a key structure of the human locomotor system. The knowledge of how each single anatomical structure of the knee contributes to determine the physiological function of the knee, is of fundamental importance for the development of new prostheses and novel clinical, surgical, and rehabilitative procedures. In this context, a modelling approach is necessary to estimate the biomechanic function of each anatomical structure during daily living activities. The main aim of this study was to obtain a subject-specific model of the knee joint of a selected healthy subject. In particular, 3D models of the cruciate ligaments and of the tibio-femoral articular contact were proposed and developed using accurate bony geometries and kinematics reliably recorded by means of nuclear magnetic resonance and 3D video-fluoroscopy from the selected subject. Regarding the model of the cruciate ligaments, each ligament was modelled with 25 linear-elastic elements paying particular attention to the anatomical twisting of the fibres. The devised model was as subject-specific as possible. The geometrical parameters were directly estimated from the experimental measurements, whereas the only mechanical parameter of the model, the elastic modulus, had to be considered from the literature because of the invasiveness of the needed measurements. Thus, the developed model was employed for simulations of stability tests and during living activities. Physiologically meaningful results were always obtained. Nevertheless, the lack of subject-specific mechanical characterization induced to design and partially develop a novel experimental method to characterize the mechanics of the human cruciate ligaments in living healthy subjects. Moreover, using the same subject-specific data, the tibio-femoral articular interaction was modelled investigating the location of the contact point during the execution of daily motor tasks and the contact area at the full extension with and without the whole body weight of the subject. Two different approaches were implemented and their efficiency was evaluated. Thus, pros and cons of each approach were discussed in order to suggest future improvements of this methodologies. The final results of this study will contribute to produce useful methodologies for the investigation of the in-vivo function and pathology of the knee joint during the execution of daily living activities. Thus, the developed methodologies will be useful tools for the development of new prostheses, tools and procedures both in research field and in diagnostic, surgical and rehabilitative fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In case of severe osteoarthritis at the knee causing pain, deformity, and loss of stability and mobility, the clinicians consider that the substitution of these surfaces by means of joint prostheses. The objectives to be pursued by this surgery are: complete pain elimination, restoration of the normal physiological mobility and joint stability, correction of all deformities and, thus, of limping. The knee surgical navigation systems have bee developed in computer-aided surgery in order to improve the surgical final outcome in total knee arthroplasty. These systems provide the surgeon with quantitative and real-time information about each surgical action, like bone cut executions and prosthesis component alignment, by mean of tracking tools rigidly fixed onto the femur and the tibia. Nevertheless, there is still a margin of error due to the incorrect surgical procedures and to the still limited number of kinematic information provided by the current systems. Particularly, patello-femoral joint kinematics is not considered in knee surgical navigation. It is also unclear and, thus, a source of misunderstanding, what the most appropriate methodology is to study the patellar motion. In addition, also the knee ligamentous apparatus is superficially considered in navigated total knee arthroplasty, without taking into account how their physiological behavior is altered by this surgery. The aim of the present research work was to provide new functional and biomechanical assessments for the improvement of the surgical navigation systems for joint replacement in the human lower limb. This was mainly realized by means of the identification and development of new techniques that allow a thorough comprehension of the functioning of the knee joint, with particular attention to the patello-femoral joint and to the main knee soft tissues. A knee surgical navigation system with active markers was used in all research activities presented in this research work. Particularly, preliminary test were performed in order to assess the system accuracy and the robustness of a number of navigation procedures. Four studies were performed in-vivo on patients requiring total knee arthroplasty and randomly implanted by means of traditional and navigated procedures in order to check for the real efficacy of the latter with respect to the former. In order to cope with assessment of patello-femoral joint kinematics in the intact and replaced knees, twenty in-vitro tests were performed by using a prototypal tracking tool also for the patella. In addition to standard anatomical and articular recommendations, original proposals for defining the patellar anatomical-based reference frame and for studying the patello-femoral joint kinematics were reported and used in these tests. These definitions were applied to two further in-vitro tests in which, for the first time, also the implant of patellar component insert was fully navigated. In addition, an original technique to analyze the main knee soft tissues by means of anatomical-based fiber mappings was also reported and used in the same tests. The preliminary instrumental tests revealed a system accuracy within the millimeter and a good inter- and intra-observer repeatability in defining all anatomical reference frames. In in-vivo studies, the general alignments of femoral and tibial prosthesis components and of the lower limb mechanical axis, as measured on radiographs, was more satisfactory, i.e. within ±3°, in those patient in which total knee arthroplasty was performed by navigated procedures. As for in-vitro tests, consistent patello-femoral joint kinematic patterns were observed over specimens throughout the knee flexion arc. Generally, the physiological intact knee patellar motion was not restored after the implant. This restoration was successfully achieved in the two further tests where all component implants, included the patellar insert, were fully navigated, i.e. by means of intra-operative assessment of also patellar component positioning and general tibio-femoral and patello-femoral joint assessment. The tests for assessing the behavior of the main knee ligaments revealed the complexity of the latter and the different functional roles played by the several sub-bundles compounding each ligament. Also in this case, total knee arthroplasty altered the physiological behavior of these knee soft tissues. These results reveal in-vitro the relevance and the feasibility of the applications of new techniques for accurate knee soft tissues monitoring, patellar tracking assessment and navigated patellar resurfacing intra-operatively in the contest of the most modern operative techniques. This present research work gives a contribution to the much controversial knowledge on the normal and replaced of knee kinematics by testing the reported new methodologies. The consistence of these results provides fundamental information for the comprehension and improvements of knee orthopedic treatments. In the future, the reported new techniques can be safely applied in-vivo and also adopted in other joint replacements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of human joint models was shown in the literature. In particular, the great importance of models for the joint passive motion simulation (i.e. motion under virtually unloaded conditions) was outlined. They clarify the role played by the principal anatomical structures of the articulation, enhancing the comprehension of surgical treatments, and in particular the design of total ankle replacement and ligament reconstruction. Equivalent rigid link mechanisms proved to be an efficient tool for an accurate simulation of the joint passive motion. This thesis focuses on the ankle complex (i.e. the anatomical structure composed of the tibiotalar and the subtalar joints), which has a considerable role in human locomotion. The lack of interpreting models of this articulation and the poor results of total ankle replacement arthroplasty have strongly suggested devising new mathematical models capable of reproducing the restraining function of each structure of the joint and of replicating the relative motion of the bones which constitute the joint itself. In this contest, novel equivalent mechanisms are proposed for modelling the ankle passive motion. Their geometry is based on the joint’s anatomical structures. In particular, the role of the main ligaments of the articulation is investigated under passive conditions by means of nine 5-5 fully parallel mechanisms. Based on this investigation, a one-DOF spatial mechanism is developed for modelling the passive motion of the lower leg. The model considers many passive structures constituting the articulation, overcoming the limitations of previous models which took into account few anatomical elements of the ankle complex. All the models have been identified from experimental data by means of optimization procedure. Then, the simulated motions have been compared to the experimental one, in order to show the efficiency of the approach and thus to deduce the role of each anatomical structure in the ankle kinematic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 39 [corrected] exhibiting PDP, while 44 [corrected] demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 71% [corrected] of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 76% [corrected] of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0007). [corrected] The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this study was to clinically and histologically evaluate periodontal wound healing/regeneration following surgical implantation of recombinant human growth/differentiation factor-5 (rhGDF-5) adsorbed onto a particulate ?-tricalcium phosphate (?-TCP) carrier rhGDF-5/?-TCP into periodontal defects in man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To present the safety profile, the early healing phase and the clinical outcomes at 24 weeks following treatment of human intrabony defects with open flap debridement (OFD) alone or with OFD and rhGDF-5 adsorbed onto a particulate β-tricalcium phosphate (β-TCP) carrier. Twenty chronic periodontitis patients, each with at least one tooth exhibiting a probing depth ≥6 mm and an associated intrabony defect ≥4 mm entered the study. Ten subjects (one defect/patient) were randomized to receive OFD alone (control) and ten subjects OFD combined with rhGDF-5/β-TCP. Blood samples were collected at screening, and at weeks 2 and 24 to evaluate routine hematology and clinical chemistry, rhGDF-5 plasma levels, and antirhGDF-5 antibody formation. Plaque and gingival indices, bleeding on probing, probing depth, clinical attachment level, and radiographs were recorded pre- and 24 weeks postsurgery. Comparable safety profiles were found in the two treatment groups. Neither antirhGDF-5 antibody formation nor relevant rhGDF-5 plasma levels were detected in any patient. At 6 months, treatment with OFD + rhGDF-5/β-TCP resulted in higher but statistically not significant PD reduction (3.7 ± 1.2 vs. 3.1 ± 1.8 mm; p = 0.26) and CAL gain (3.2 ± 1.7 vs. 1.7 ± 2.2 mm; p = 0.14) compared to OFD alone. In the tested concentration, the use of rhGDF-5/β-TCP appeared to be safe and the material possesses a sound biological rationale. Thus, further adequately powered, randomized controlled clinical trials are warranted to confirm the clinical relevance of this new approach in regenerative periodontal therapy. rhGDF-5/β-TCP may represent a promising new techology in regenerative periodontal therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A derivative (EMD) of enamel matrix proteins (EMPs) is used for periodontal regeneration because EMPs are believed to induce the formation of acellular extrinsic fiber cementum (AEFC). Other reports, however, indicate that EMPs have osteogenic potential. The aim of this study was to characterize the nature of the tissue that forms on the root surface following application of EMD. Ten human teeth affected by periodontitis and scheduled for extraction were treated with EMD. Four to six weeks later, they were extracted and processed for analysis by light microscopy and transmission electron microscopy. Immunocytochemistry with antibodies against bone sialoprotein (BSP) and osteopontin (OPN) was performed to determine the mineralization pattern. The newly formed tissues on the root were thick and contained embedded cells. Small mineralization foci were regularly seen, and large organic matrix patches were occasionally seen, but a distinct mineralization front was lacking. While labeling for BSP was always associated with small mineralization foci and large matrix patches, OPN labeling was seen inconsistently. It is concluded that tissues resembling either cellular intrinsic fiber cementum or a type of bone were observed. The mineralization pattern mostly resembled that found in bone, except for a few areas that exhibited a hitherto undescribed mineralization pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Root canal obliterations may pose esthetic and clinical problems or may even be a risk factor for tooth survival. Microcalcifications in the pulp can be so extensive that the entire root canal system becomes obliterated. Since bone sialoprotein (BSP) and osteopontin (OPN) are involved in both physiological and pathological mineralization processes, our hypothesis was that these two bone-related noncollagenous proteins are present in microcalcifications of the pulp. The purpose of this study was, therefore, to characterize the nature of microcalcifications in the pulp of aged human teeth. Methods: From a large collection of human teeth, 10 were found to exhibit pulpal microcalcifications. The teeth were extracted for periodontal reasons from 39-60 year old patients. After fixation in aldehydes and decalcification, teeth were processed for embedding in LR White resin for analysis in the light and transmission electron microscope. For the detection of BSP and OPN, post-embedding high resolution immunocytochemistry was applied. Results: The microcalcifications were round or elongated, occasionally coalescing, and intensely stained with toluidine blue. Collagen fibrils were found in most but not all microcalcifications. All microcalcifications were immunoreactive for both antibodies and showed an identical labeling pattern. Gold particle labeling was extensively found throughout the interfibrillar ground substance of the microcalcifications, whereas the dentin matrix lacked immunolabeling. Conclusion: BSP and OPN appear to be major matrix constituents of pulp microcalcifications and may thus, like in other mineralized tissues, be involved in their mineralization process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.