936 resultados para Graphite.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time horseradish peroxidase (HRP) immobilized on the surface of active carbon powder modified at the surface of a glassy carbon electrode has been shown to undergo a direct quasi-reversible electrochemical reaction. Its formal potential, E-o/, is -0.363 V in phosphate buffer solution (pH 6.8) at a scan rate of 100 mV/s and is almost independent of the scan rate in the range of 50-700 mV/s. The dependence of E-o/ on the pH of the buffer solution indicated that the conversion of HRP-Fe(III)/HRP-Fe(II) is a one-electron-transfer reaction process coupled with one-proton-transfer. The experimental results also demonstrated that the immobilized HRP retained its bioelectrocatalytic activity to the reduction of H2O2. Furthermore, the HRP adsorbed oil the surface of the active carbon powder can be stored at 4 degreesC for several months without any loss of the enzyme activity. The method presented for immobilizing HRP can be easily extended to immobilize and obtain the direct electrochemistry of other enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two typical and important copper-containing enzymes, laccase (Lac) and tyrosinase (Tyr), have been immobilized on the surface of active carbon with simple adsorption method. The cyclic voltammetric results indicated that the active carbon could promote the direct electron transfer of both Lac and Tyr and a pair of well-defined and nearly symmetric redox peaks appeared on the cyclic voltammograms of Lac or Tyr with the formal potential, E-0', independent on the scan rate. The further experimental results showed that the immobilized copper-containing oxidase displayed an excellent electrocatalytic activity to the electrochemical reduction of O-2. The immobilization method presented here has several advantages, such as simplicity, easy to operation and keeping good activity of enzyme etc., and could be further used to study the direct electrochemistry of other redox proteins and enzymes and fabricate the catalysts for biofuel cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flat-lying, densely packed DNA monolayers in which DNA chains are well organized have been successfully constructed on a mica surface by dropping a droplet of a DNA solution on a freshly cleaved mica surface and subsequently transferring the mica to ultrapure water for developing. The formation kinetics of such monolayers was studied by tapping mode atomic force microscopy (TMAFM) technique. A series of TMAFM images of DNA films obtained at various developing times show that before the sample was immersed into water for developing the DNA chains always seriously aggregated by contacting, crossing, or overlapping and formed large-scale networks on the mica surface. During developing, the fibers of DNA networks gradually dispersed into many smaller fibers up to single DNA chains. At the same time, the fibers or DNA chains also experienced rearrangement to decrease electrostatic repulsion and interfacial Gibbs free energy. Finally, a flat-lying, densely packed DNA monolayer was formed. A formation mechanism of the DNA monolayers was proposed that consists of aggregation, dispersion, and rearrangement. The effects of both DNA and Mg2+ concentration in the formation solution on DNA monolayer formation were also investigated in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a simple route to the fabrication of palladium nanosheets is described. The interaction of palladium chloride (PdCl2) and n-octylamine salt resulted in the formation of a quasi-perovskite-type composite with a layered structure on a molecular scale. This composite can be employed as a template for preparing ultrathin Pd nanosheets when a {PdCl4}(2-) network is reduced in situ by hydrogen in toluene. The x-ray diffraction results indicate that the resulting Pd nanosheets are highly ordered, and they are confined inside the organic matrix as evidenced by high resolution transmission electron microscopy. These Pd nanosheets can be reorganized into layered structures in non-polarized organic solvent when the ordered structure is destroyed. This method of preparing Pd nanosheets is expected to be applicable to other layered organic/inorganic perovskite systems for obtaining the corresponding metal nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth kinetics of self-assembled monolayers formed by exposing freshly cleaved mica to octanol solution has been studied by atomic force microscopy (AFM) and Fourier-transform infrared spectroscopy (FTIR). AFM images of samples immersed in octanol for varying exposure times showed that before forming a complete monolayer the octanol molecules aggregated in the form of small islands on the mica surface. With the proceeding of immersion, these islands gradually grew and merged into larger patches. Finally, a close-packed film with uniform appearance and few defects was formed. The thickness of the final film showed 0.8 nm in height, which corresponded to the 40degrees tilt molecular conformation of the octanol monolayer. The growth mechanisms consisted of nucleation, growth, and coalescence of the submonolayer films. The growth process was also confirmed by FTIR. And the surface coverage of the submonolayer islands estimated from AFM images and FTIR spectra as a function of immersion time was quite consistent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical behavior of pyridine distribution at the water/1,2-dichloroethane interface with variable phase volume ratios (r=V-0/V-W) was investigated by cyclic voltammetry. The system was composed of an aqueous droplet supported on a Ag/AgCl disk electrode covered with an organic solution or an organic droplet supported on a Ag/AgTPBCl disk electrode covered with an aqueous solution. In this way, a conventional three-electrode potentiostat can be used to study an ionizable compound transfer process at a liquid/liquid interface with a wide range of phase volume ratios (from 0.0004 to 1 and from 1 to 2500). Using this special cell we designed, only very small volumes of both phase were needed for r equal to unity, which is very useful for the investigation of the distribution of ionizable species at a biphasic system when the available amount of species is limited. The ionic partition diagrams were obtained for different phase volume ratios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of La3+ on the electrochemical behavior and structure of heme undecapeptide-microperoxidase-11 (MP-11)-in the aqueous solution was investigated using cyclic voltammetry, circular dichroism (CD) and UV-vis absorption spectrometry. It was found for the first time that La3+ would promote the electrochemical reaction of MP-11 at the glassy carbon (GC) electrode. This is mainly due to the fact that La3+ would induce more beta-turn and alpha-helical conformations from the random coil conformation of MP-11 and increase the non-planarity of the heme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through layer-by-layer method [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) and polyoxometalyte were alternately deposited on 4-aminobenzoic acid (4-ABA) modified glassy carbon electrode. The resulting organic-inorganic hybrid films were characterized by cyclic voltammetry (CV), UV/visible absorption spectroscopy, and atomic force microscopy (AFM). It was proved that the multilayer films are uniform and stable. CoTMPyP-containing multilayer films exhibit remarkable electrocatalytic activity for the reduction of O-2. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry confirm that P2W18/CoTMPyP multilayer films can catalyze the four-electron almost reduction of O-2 to water in pH > 4.0 buffer solution, while SiW12/CoTMPyP multilayer films catalyze about two-electron reduction of O-2 to H2O2 in pH 1 - 6 buffer solutions. The kinetic constants for O-2 reduction were comparatively investigated at P2W18/CoTMPyP and SiW12/CoTMPyP multilayer films electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct electrochemistry of hemoglobin was observed in stable thin film composed of a natural lipid (egg-phosphatidylcholine) and hemoglobin on pyrolytic graphite (PG) electrode. Hemoglobin in lipid films shows thin layer electrochemistry behavior. The formal potential Edegrees' of hemoglobin in the lipid film was linearly varied with pH in the range from 3.5 to 7.0 with a slope of -46.4 mV pH(-1) Hemoglobin in the lipid film exhibited elegant catalytic activity for electrochemical reduction of H202, based which a unmediated biosensor for H2O2 was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferrocenebutyrate-intercalated layered double hydroxide (FcLDH) was prepared by the coprecipitation method and characterized by PXRD, FTIR, TEM and elemental analysis. FcLDH nanoparticles in deionized water were deposited onto the surface of graphite powder to yield graphite powder-supported FcLDH, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing the electroactive ferrocenyl group. Cyclic voltammetric study revealed that peak currents of the FcLDH-modified electrode were diffusion-con trolled in 0.1 mol l(-1) KCl aqueous solution. In addition, the formal potential of the modified electrode is related to the activity of chloride ion with a Nernst slope of 56 mV per decade.