923 resultados para Germin-like protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic microtubules (MTs) are required for neuronal guidance, in which axons extend directionally toward their target tissues. We found that depletion of the MT-binding protein Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) or treatment with the MT drug Taxol reduced axon outgrowth in spinal cord neurons. To quantify the dynamic distribution of MTs in axons, we developed an automated algorithm to detect and track MT plus ends that have been fluorescently labeled by end-binding protein 3 (EB3). XCLASP1 depletion reduced MT advance rates in neuronal growth cones, very much like treatment with Taxol, demonstrating a potential link between MT dynamics in the growth cone and axon extension. Automatic tracking of EB3 comets in different compartments revealed that MTs increasingly slowed as they passed from the axon shaft into the growth cone and filopodia. We used speckle microscopy to demonstrate that MTs experience retrograde flow at the leading edge. Microtubule advance in growth cone and filopodia was strongly reduced in XCLASP1-depleted axons as compared with control axons, but actin retrograde flow remained unchanged. Instead, we found that XCLASP1-depleted growth cones lacked lamellipodial actin organization characteristic of protrusion. Lamellipodial architecture depended on XCLASP1 and its capacity to associate with MTs, highlighting the importance of XCLASP1 in actin-microtubule interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particular microenvironment of the skeletal muscle can be the site of complex immune reactions. Toll-like receptors (TLRs) mediate inflammatory stimuli from pathogens and endogenous danger signals and link the innate and adaptive immune system. We investigated innate immune responses in human muscle. Analyzing TLR1-9 mRNA in cultured myoblasts and rhabdomyosarcoma cells, we found constitutive expression of TLR3. The TLR3 ligand Poly (I:C), a synthetic analog of dsRNA, and IFN-gamma increased TLR3 levels. TLR3 was mainly localized intracellularly and regulated at the protein level. Poly (I:C) challenge 1) activated nuclear factor-kappaB (NF-kappaB), 2) increased IL-8 release, and 3) up-regulated NKG2D ligands and NK-cell-mediated lysis of muscle cells. We examined muscle biopsy specimens of 6 HIV patients with inclusion body myositis/polymyositis (IBM/PM), 7 cases of sporadic IBM and 9 nonmyopathic controls for TLR3 expression. TLR3 mRNA levels were elevated in biopsy specimens from patients with IBM and HIV-myopathies. Muscle fibers in inflammatory myopathies expressed TLR3 in close proximity of infiltrating mononuclear cells. Taken together, our study suggests an important role of TLR3 in the immunobiology of muscle, and has substantial implications for the understanding of the pathogenesis of inflammatory myopathies or therapeutic interventions like vaccinations or gene transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bdellovibrio bacteriovorus HD100 must regulate genes in response to a variety of environmental conditions as it enters, preys upon and leaves other bacteria, or grows axenically without prey. In addition to "housekeeping" sigma factors, its genome encodes several alternate sigma factors, including 2 Group IV-RpoE-like proteins, which may be involved in the complex regulation of its predatory lifestyle.

RESULTS: We find that one sigma factor gene, bd3314, cannot be deleted from Bdellovibrio in either predatory or prey-independent growth states, and is therefore possibly essential, likely being an alternate sigma 70. Deletion of one of two Group IV-like sigma factor genes, bd0881, affects flagellar gene regulation and results in less efficient predation, although not due to motility changes; deletion of the second, bd0743, showed that it normally represses chaperone gene expression and intriguingly we find an alternative groES gene is expressed at timepoints in the predatory cycle where intensive protein synthesis at Bdellovibrio septation, prior to prey lysis, will be occurring.

CONCLUSIONS: We have taken the first step in understanding how alternate sigma factors regulate different processes in the predatory lifecycle of Bdellovibrio and discovered that alternate chaperones regulated by one of them are expressed at different stages of the lifecycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044.

RESULTS: In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism.

CONCLUSIONS: Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho propõe-se esclarecer o papel que a progesterona e os seus metabolitos exercem no sistema nervoso central. Nos últimos anos, com a descoberta da síntese local de esteróides no cérebro, a progesterona, assim como outras hormonas sexuais, ganharam uma relevância crescente em fenómenos tais como plasticidade neuronal e neuroprotecção. Ainda que já se comece a entender o papel de muitas hormonas no cérebro, tal como o estrogénio, o papel da progesterona continua menos conhecido. Deste modo, o nosso trabalho centrou-se na elucidação dos efeitos da progesterona em fenómenos de sobrevivência celular, plasticidade neuronal/sináptica. Graças à colaboração com um grupo pioneiro em estudos sobre hormonas sexuais neuroactivas, o presente trabalho fornece uma importante contribuição ao entendimento do papel desta hormona no sistema nervoso central. Este trabalho fornece novos dados, relativamente ao papel da progesterona e dos seus metabolitos reduzidos na regulação de vias de sinalização associadas com sobrevivência celular, tal como Akt/PI3K e ERK. Também é analisado o efeito do tratamento hormonal na expressão e estado de fosforilação da proteína Tau, sendo ainda motivo de estudo cinases e fosfatases envolvidas nestes mecanismos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation and fibrillation of proteins have a great importance in medicine and industry. Misfolding and aggregation are the basis of many neurodegenerative diseases like Alzheimer and Parkinson. Osmolytes are molecules that can accumulate within cells and act as protective agents and they can inclusively act as protein stabilizers when cells are exposed to stress conditions. Osmolytes can also act as protein stabilizers in vitro. In this work, two different proteins were studied, the ribosomal protein from Thermus thermophilus and the mouse prion protein. The existence of an unstructured N-terminal on the prion protein does not affect its stability. The effect of the osmolyte sucrose on the fibrillation and stabilization of these two proteins was studied through kinectic and equilibrium measurements. It was shown that sucrose is able to compact the native structure of S6 protein in fibrillization conditions. Sucrose affects also folding and unfolding kinetic of S6 protein, delaying unfolding and increasing folding rate constants. The mechanism of stabilization by sucrose is non-specific because it is distributed for all protein structure, as it was demonstrated by a protein engineering approach. Sucrose delays the process of formation and elongation of S6 and prion protein from mouse. This delay is the result of the compaction of the native structure refered above. However, cellular toxicity studies have shown that fibrils formed in the presence of sucrose are more toxic to neuronal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochromes P450 constitute a super-family of enzymes involved in the metabolism of Xenobiotics, where human cytochrome P450 3A4 is the most abundant of all P450s, accounting for about 50% of all human liver cytochromes. This membrane anchored protein is responsible for the metabolization of a wide array of environmental drugs and intoxicants, mainly due to its haem domain properties, and active site cavity volume. These properties make this protein an excellent subject for biosensor application, although CYO3A4 enzyme is also famous for its instability. Enzyme inactivation at room temperature is a normal conversion process that this enzyme undergoes, that may hamper any biosensing approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rett syndrome is a genetic neurodevelopmental disorder that affects mainly girls, but mutations in the causative MECP2 gene have also been identified in boys with classic Rett syndrome and Rett syndrome-like phenotypes. We have studied a group of 28 boys with a neurodevelopmental disorder, 13 of which with a Rett syndrome-like phenotype; the patients had diverse clinical presentations that included perturbations of the autistic spectrum, microcephaly, mental retardation, manual stereotypies, and epilepsy. We analyzed the complete coding region of the MECP2 gene, including the detection of large rearrangements, and we did not detect any pathogenic mutations in the MECP2 gene in these patients, in whom the genetic basis of disease remained unidentified. Thus, additional genes should be screened in this group of patients.