973 resultados para Gaussian Probability Distribution
Resumo:
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Doutoramento em Gestão
Resumo:
Several deterministic and probabilistic methods are used to evaluate the probability of seismically induced liquefaction of a soil. The probabilistic models usually possess some uncertainty in that model and uncertainties in the parameters used to develop that model. These model uncertainties vary from one statistical model to another. Most of the model uncertainties are epistemic, and can be addressed through appropriate knowledge of the statistical model. One such epistemic model uncertainty in evaluating liquefaction potential using a probabilistic model such as logistic regression is sampling bias. Sampling bias is the difference between the class distribution in the sample used for developing the statistical model and the true population distribution of liquefaction and non-liquefaction instances. Recent studies have shown that sampling bias can significantly affect the predicted probability using a statistical model. To address this epistemic uncertainty, a new approach was developed for evaluating the probability of seismically-induced soil liquefaction, in which a logistic regression model in combination with Hosmer-Lemeshow statistic was used. This approach was used to estimate the population (true) distribution of liquefaction to non-liquefaction instances of standard penetration test (SPT) and cone penetration test (CPT) based most updated case histories. Apart from this, other model uncertainties such as distribution of explanatory variables and significance of explanatory variables were also addressed using KS test and Wald statistic respectively. Moreover, based on estimated population distribution, logistic regression equations were proposed to calculate the probability of liquefaction for both SPT and CPT based case history. Additionally, the proposed probability curves were compared with existing probability curves based on SPT and CPT case histories.
Resumo:
This report discusses the calculation of analytic second-order bias techniques for the maximum likelihood estimates (for short, MLEs) of the unknown parameters of the distribution in quality and reliability analysis. It is well-known that the MLEs are widely used to estimate the unknown parameters of the probability distributions due to their various desirable properties; for example, the MLEs are asymptotically unbiased, consistent, and asymptotically normal. However, many of these properties depend on an extremely large sample sizes. Those properties, such as unbiasedness, may not be valid for small or even moderate sample sizes, which are more practical in real data applications. Therefore, some bias-corrected techniques for the MLEs are desired in practice, especially when the sample size is small. Two commonly used popular techniques to reduce the bias of the MLEs, are ‘preventive’ and ‘corrective’ approaches. They both can reduce the bias of the MLEs to order O(n−2), whereas the ‘preventive’ approach does not have an explicit closed form expression. Consequently, we mainly focus on the ‘corrective’ approach in this report. To illustrate the importance of the bias-correction in practice, we apply the bias-corrected method to two popular lifetime distributions: the inverse Lindley distribution and the weighted Lindley distribution. Numerical studies based on the two distributions show that the considered bias-corrected technique is highly recommended over other commonly used estimators without bias-correction. Therefore, special attention should be paid when we estimate the unknown parameters of the probability distributions under the scenario in which the sample size is small or moderate.
Resumo:
Aim When faced with dichotomous events, such as the presence or absence of a species, discrimination capacity (the ability to separate the instances of presence from the instances of absence) is usually the only characteristic that is assessed in the evaluation of the performance of predictive models. Although neglected, calibration or reliability (how well the estimated probability of presence represents the observed proportion of presences) is another aspect of the performance of predictive models that provides important information. In this study, we explore how changes in the distribution of the probability of presence make discrimination capacity a context-dependent characteristic of models. For the first time,we explain the implications that ignoring the context dependence of discrimination can have in the interpretation of species distribution models.
Resumo:
In this work we used the information of the Annual Hunting Reports (AHRs) to obtain a high-resolution model of the potential favourableness for wild rabbit harvesting in Andalusia (southern Spain), using environmental and land-use variables as predictors. We analysed 32,134 AHRs from the period 1993/2001 reported by 6049 game estates to estimate the average hunting yields of wild rabbit in each Andalusian municipality (n5771). We modelled the favourableness for obtaining good hunting yields using stepwise logistic regression on a set of climatic, orographical, land use, and vegetation variables. The favourability equation was used to create a downscaled image representing the favourableness of obtaining good hunting yields for the wild rabbit in 161 km squares in Andalusia, using the Idrisi Image Calculator. The variables that affected hunting yields of wild rabbit were altitude, dry wood crops (mainly olive groves, almond groves, and vineyards), temperature, pasture, slope, and annual number of frost days. The 161 km squares with high favourableness values are scattered throughout the territory, which seems to be caused mainly by the effect of vegetation. Finally, we obtained quality categories for the territory by combining the probability values given by logistic regression with those of the environmental favourability function.
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.
Resumo:
The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle.
Resumo:
Within the classification of orbits in axisymmetric stellar systems, we present a new algorithm able to automatically classify the orbits according to their nature. The algorithm involves the application of the correlation integral method to the surface of section of the orbit; fitting the cumulative distribution function built with the consequents in the surface of section of the orbit, we can obtain the value of its logarithmic slope m which is directly related to the orbit’s nature: for slopes m ≈ 1 we expect the orbit to be regular, for slopes m ≈ 2 we expect it to be chaotic. With this method we have a fast and reliable way to classify orbits and, furthermore, we provide an analytical expression of the probability that an orbit is regular or chaotic given the logarithmic slope m of its correlation integral. Although this method works statistically well, the underlying algorithm can fail in some cases, misclassifying individual orbits under some peculiar circumstances. The performance of the algorithm benefits from a rich sampling of the traces of the SoS, which can be obtained with long numerical integration of orbits. Finally we note that the algorithm does not differentiate between the subtypes of regular orbits: resonantly trapped and untrapped orbits. Such distinction would be a useful feature, which we leave for future work. Since the result of the analysis is a probability linked to a Gaussian distribution, for the very definition of distribution, some orbits even if they have a certain nature are classified as belonging to the opposite class and create the probabilistic tails of the distribution. So while the method produces fair statistical results, it lacks in absolute classification precision.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
Amphibians have been declining worldwide and the comprehension of the threats that they face could be improved by using mark-recapture models to estimate vital rates of natural populations. Recently, the consequences of marking amphibians have been under discussion and the effects of toe clipping on survival are debatable, although it is still the most common technique for individually identifying amphibians. The passive integrated transponder (PIT tag) is an alternative technique, but comparisons among marking techniques in free-ranging populations are still lacking. We compared these two marking techniques using mark-recapture models to estimate apparent survival and recapture probability of a neotropical population of the blacksmith tree frog, Hypsiboas faber. We tested the effects of marking technique and number of toe pads removed while controlling for sex. Survival was similar among groups, although slightly decreased from individuals with one toe pad removed, to individuals with two and three toe pads removed, and finally to PIT-tagged individuals. No sex differences were detected. Recapture probability slightly increased with the number of toe pads removed and was the lowest for PIT-tagged individuals. Sex was an important predictor for recapture probability, with males being nearly five times more likely to be recaptured. Potential negative effects of both techniques may include reduced locomotion and high stress levels. We recommend the use of covariates in models to better understand the effects of marking techniques on frogs. Accounting for the effect of the technique on the results should be considered, because most techniques may reduce survival. Based on our results, but also on logistical and cost issues associated with PIT tagging, we suggest the use of toe clipping with anurans like the blacksmith tree frog.
Resumo:
The aim of this cephalometric study was to evaluate the influence of the sagittal skeletal pattern on the 'Y-axis of growth' measurement in patients with different malocclusions. Lateral head films from 59 patients (mean age 16y 7m, ranging from 11 to 25 years) were selected after a subjective analysis of 1630 cases. Sample was grouped as follows: Group 1 - class I facial pattern; group 2 - class II facial pattern; and Group 3 - class III facial pattern. Two angular measurements, SNGoGn and SNGn, were taken in order to determine skeletal vertical facial pattern. A logistic regression with errors distributed according to a binomial distribution was used to test the influence of the sagittal relationship (Class I, II, III facial patterns) on vertical diagnostic measurement congruence (SNGoGn and SNGn). RESULTS show that the probability of congruence between the patterns SNGn and SNGoGn was relatively high (70%) for group 1, but for groups II (46%) and III (37%) this congruence was relatively low. The use of SNGn appears to be inappropriate to determine the vertical facial skeletal pattern of patients, due to Gn point shifting throughout sagittal discrepancies. Clinical Significance: Facial pattern determined by SNGn must be considered carefully, especially when severe sagittal discrepancies are present.