904 resultados para Gamification,User experience,Tecnologie Web,Mobile devices,Web app,Beni culturali,Casa Bufalini
Resumo:
Mobile technology has been one of the major growth areas in computing over recent years (Urbaczewski, Valacich, & Jessup, 2003). Mobile devices are becoming increasingly diverse and are continuing to shrink in size and weight. Although this increases the portability of such devices, their usability tends to suffer. Fuelled almost entirely by lack of usability, users report high levels of frustration regarding interaction with mobile technologies (Venkatesh, Ramesh, & Massey, 2003). This will only worsen if interaction design for mobile technologies does not continue to receive increasing research attention. For the commercial benefit of mobility and mobile commerce (m-commerce) to be fully realized, users’ interaction experiences with mobile technology cannot be negative. To ensure this, it is imperative that we design the right types of mobile interaction (m-interaction); an important prerequisite for this is ensuring that users’ experience meets both their sensory and functional needs (Venkatesh, Ramesh, & Massey, 2003). Given the resource disparity between mobile and desktop technologies, successful electronic commerce (e-commerce) interface design and evaluation does not necessarily equate to successful m-commerce design and evaluation. It is, therefore, imperative that the specific needs of m-commerce are addressed–both in terms of design and evaluation. This chapter begins by exploring the complexities of designing interaction for mobile technology, highlighting the effect of context on the use of such technology. It then goes on to discuss how interaction design for mobile devices might evolve, introducing alternative interaction modalities that are likely to affect that future evolution. It is impossible, within a single chapter, to consider each and every potential mechanism for interacting with mobile technologies; to provide a forward-looking flavor of what might be possible, this chapter focuses on some more novel methods of interaction and does not, therefore, look at the typical keyboard and visual display-based interaction which, in essence, stem from the desktop interaction design paradigm. Finally, this chapter touches on issues associated with effective evaluation of m-interaction and mobile application designs. By highlighting some of the issues and possibilities for novel m-interaction design and evaluation, we hope that future designers will be encouraged to “think out of the box” in terms of their designs and evaluation strategies.
Resumo:
For a very large number of adults, tasks such as reading. understanding, and using everyday items are a challenge. Although many community-based organizations offer resources and support for adults with limited literacy skills. current programs have difficulty reaching and retaining those that would benefit most. In this paper we present the findings of an exploratory study aimed at investigating how a technological solution that addresses these challenges is received and adopted by adult learners. For this, we have developed a mobile application to support literacy programs and to assist low-literacy adults in today's information-centric society. ALEX© (Adult Literacy support application for Experiential learning) is a mobile language assistant that is designed to be used both in the classroom and in daily life in order to help low-literacy adults become increasingly literate and independent. Through a long-term study with adult learners we show that such a solution complements literacy programs by increasing users' motivation and interest in learning, and raising their confidence levels both in their education pursuits and in facing the challenges of their daily lives.
Resumo:
Following miniaturisation of cameras and their integration into mobile devices such as smartphones combined with the intensive use of the latter, it is likely that in the near future the majority of digital images will be captured using such devices rather than using dedicated cameras. Since many users decide to keep their photos on their mobile devices, effective methods for managing these image collections are required. Common image browsers prove to be only of limited use, especially for large image sets [1].
Resumo:
When designing interaction techniques for mobile devices we must ensure users are able to safely navigate through their physical environment while interacting with their mobile device. Non-speech audio has proven effective at improving interaction on mobile devices by allowing users to maintain visual focus on environmental navigation while presenting information to them via their audio channel. The research described here builds on this to create an audio-enhanced single-stroke-based text entry facility that demands as little visual resource as possible. An evaluation of the system demonstrated that users were more aware of their errors when dynamically guided by audio-feedback. The study also highlighted the effect of handwriting style and mobility on text entry; designers of handwriting recognizers and of applications involving mobile note taking can use this fundamental knowledge to further develop their systems to better support the mobility of mobile text entry.
Resumo:
This article explores the different ways that user experience is defined and conceptualized, and the various policy and professional contexts in which emphasis is placed on exploring users’ views. We go on to examine the experience of cancer as a chronic illness and argue that, although there are common features in the experience of cancer and people with chronic illness, the differences are too significant and cancer should not be defined as a chronic condition. We conclude with a consideration of the methodological difficulties of documenting user experience and identify the need for further methodological development.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014
Resumo:
Ongoing advances in technology are increasing the scope for enhancing and supporting older adults’ daily living. The digital divide between older and younger adults raises concerns, however, about the suitability of technological solutions for older adults, especially for those with impairments. Taking older adults with Age-Related Macular Degeneration (AMD) as a case study, we used user-centred and participatory design approaches to develop an assistive mobile app for self-monitoring their intake of food [12,13]. In this paper we report on findings of a longitudinal field evaluation of our app that was conducted to investigate how it was received and adopted by older adults with AMD and its impact on their lives. Demonstrating the benefit of applying inclusive design methods for technology for older adults, our findings reveal how the use of the app raises participants’ awareness and facilitates self-monitoring of diet, encourages positive (diet) behaviour change, and encourages learning.
Resumo:
The global population of people aged 60 years and older is growing rapidly [1]. Ongoing advances in mobile technologies have the potential to improve independence and quality of life of older adults by supporting the delivery of personalised and ubiquitous healthcare solutions. Suggested healthcare reforms reflect the need for a future model of healthcare delivery wherein older adults take more responsibility for their own healthcare in their own homes in an attempt to moderate healthcare costs without impairing healthcare quality. For such a paradigm shift to be realised, the supporting technology must address the needs of older patients efficiently and effectively to ensure technology acceptance and use. We argue this is not possible without employing participatory approaches for the informed and effective design and development of such technologies and outline recommendations for engaging in participatory design with older adults with impairments based on practical experience.
Resumo:
The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^
Resumo:
Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.
Resumo:
Students with specific learning disabilities (SLD) typically learn less history content than their peers without disabilities and show fewer learning gains. Even when they are provided with the same instructional strategies, many students with SLD struggle to grasp complex historical concepts and content area vocabulary. Many strategies involving technology have been used in the past to enhance learning for students with SLD in history classrooms. However, very few studies have explored the effectiveness of emerging mobile technology in K-12 history classrooms. This study investigated the effects of mobile devices (iPads) as an active student response (ASR) system on the acquisition of U.S. history content of middle school students with SLD. An alternating treatments single subject design was used to compare the effects of two interventions. There were two conditions and a series of pretest probesin this study. The conditions were: (a) direct instruction and studying from handwritten notes using the interactive notebook strategy and (b) direct instruction and studying using the Quizlet App on the iPad. There were three dependent variables in this study: (a) percent correct on tests, (b) rate of correct responses per minute, and (c) rate of errors per minute. A comparative analysis suggested that both interventions (studying from interactive notes and studying using Quizlet on the iPad) had varying degrees of effectiveness in increasing the learning gains of students with SLD. In most cases, both interventions were equally effective. During both interventions, all of the participants increased their percentage correct and increased their rate of correct responses. Most of the participants decreased their rate of errors. The results of this study suggest that teachers of students with SLD should consider a post lesson review in the form of mobile devices as an ASR system or studying from handwritten notes paired with existing evidence-based practices to facilitate students’ knowledge in U.S. history. Future research should focus on the use of other interactive applications on various mobile operating platforms, on other social studies subjects, and should explore various testing formats such as oral question-answer and multiple choice.
Resumo:
The purpose of this thesis was to develop an efficient routing protocol which would provide mobility support to the mobile devices roaming within a network. The routing protocol need to be compatible with the existing internet architecture. The routing protocol proposed here is based on the Mobile IP routing protocol and could solve some of the problems existing in current Mobile IP implementation e.g. ingress filtering problem. By implementing an efficient timeout mechanism and introducing Paging mechanism to the wireless network, the protocol minimizes the number of control messages sent over the network. The implementation of the system is primarily done on three components: 1) Mobile devices that need to gain access to the network, 2) Router which would be providing roaming support to the mobile devices and 3) Database server providing basic authentication services on the system. As a result, an efficient IP routing protocol is developed which would provide seamless mobility to the mobile devices on the network.
Resumo:
The spread of wireless networks and growing proliferation of mobile devices require the development of mobility control mechanisms to support the different demands of traffic in different network conditions. A major obstacle to developing this kind of technology is the complexity involved in handling all the information about the large number of Moving Objects (MO), as well as the entire signaling overhead required to manage these procedures in the network. Despite several initiatives have been proposed by the scientific community to address this issue they have not proved to be effective since they depend on the particular request of the MO that is responsible for triggering the mobility process. Moreover, they are often only guided by wireless medium statistics, such as Received Signal Strength Indicator (RSSI) of the candidate Point of Attachment (PoA). Thus, this work seeks to develop, evaluate and validate a sophisticated communication infrastructure for Wireless Networking for Moving Objects (WiNeMO) systems by making use of the flexibility provided by the Software-Defined Networking (SDN) paradigm, where network functions are easily and efficiently deployed by integrating OpenFlow and IEEE 802.21 standards. For purposes of benchmarking, the analysis was conducted in the control and data planes aspects, which demonstrate that the proposal significantly outperforms typical IPbased SDN and QoS-enabled capabilities, by allowing the network to handle the multimedia traffic with optimal Quality of Service (QoS) transport and acceptable Quality of Experience (QoE) over time.