935 resultados para GIS, geolocalizzazione, osm, webmapping, geoinformatica, neogeografia, opendata, geodata
Resumo:
Background/aim In response to the high burden of disease associated with chronic heart failure (CHF), in particular the high rates of hospital admissions, dedicated CHF management programs (CHF-MP) have been developed. Over the past five years there has been a rapid growth of CHF-MPs in Australia. Given the apparent mismatch between the demand for, and availability of CHF-MPs, this paper has been designed to discuss the accessibility to and quality of current CHF-MPs in Australia. Methods The data presented in this report has been combined from the research of the co-authors, in particular a review of the inequities in access to chronic heart failure which utilised geographical information systems (GIS) and the survey of heterogeneity in quality and service provision in Australian. Results Of the 62 CHF-MPs surveyed in this study 93% (58) centres had been located areas that are rated as Highly Accessible. This result indicated that most of the CHF-MPs have been located in capital cities or large regional cities. Six percent (4 CHF-MPs) had been located in Accessible areas which were country towns or cities. No CHF-MPs had been established outside of cities to service the estimated 72,000 individuals with CHF living in rural and remote areas. 16% of programs recruited NYHA Class I patients and of these 20% lacked confirmation (echocardiogram) of their diagnosis. Conclusion Overall, these data highlight the urgent need to provide equitable access to CHF-MP's. When establishing CHF-MPs consideration of current evidence based models to ensure quality in practice.
Resumo:
Objective: To compare the location and accessibility of current Australian chronic heart failure (CHF) management programs and general practice services with the probable distribution of the population with CHF. Design and setting: Data on the prevalence and distribution of the CHF population throughout Australia, and the locations of CHF management programs and general practice services from 1 January 2004 to 31 December 2005 were analysed using geographic information systems (GIS) technology. Outcome measures: Distance of populations with CHF to CHF management programs and general practice services. Results: The highest prevalence of CHF (20.3–79.8 per 1000 population) occurred in areas with high concentrations of people over 65 years of age and in areas with higher proportions of Indigenous people. Five thousand CHF patients (8%) discharged from hospital in 2004–2005 were managed in one of the 62 identified CHF management programs. There were no CHF management programs in the Northern Territory or Tasmania. Only four CHF management programs were located outside major cities, with a total case load of 80 patients (0.7%). The mean distance from any Australian population centre to the nearest CHF management program was 332 km (median, 163 km; range, 0.15–3246 km). In rural areas, where the burden of CHF management falls upon general practitioners, the mean distance to general practice services was 37 km (median, 20 km; range, 0–656 km). Conclusion: There is an inequity in the provision of CHF management programs to rural Australians.
Resumo:
This study examines the impact of utilising a Decision Support System (DSS) in a practical health planning study. Specifically, it presents a real-world case of a community-based initiative aiming to improve overall public health outcomes. Previous studies have emphasised that because of a lack of effective information, systems and an absence of frameworks for making informed decisions in health planning, it has become imperative to develop innovative approaches and methods in health planning practice. Online Geographical Information Systems (GIS) has been suggested as one of the innovative methods that will inform decision-makers and improve the overall health planning process. However, a number of gaps in knowledge have been identified within health planning practice: lack of methods to develop these tools in a collaborative manner; lack of capacity to use the GIS application among health decision-makers perspectives, and lack of understanding about the potential impact of such systems on users. This study addresses the abovementioned gaps and introduces an online GIS-based Health Decision Support System (HDSS), which has been developed to improve collaborative health planning in the Logan-Beaudesert region of Queensland, Australia. The study demonstrates a participatory and iterative approach undertaken to design and develop the HDSS. It then explores the perceived user satisfaction and impact of the tool on a selected group of health decision makers. Finally, it illustrates how decision-making processes have changed since its implementation. The overall findings suggest that the online GIS-based HDSS is an effective tool, which has the potential to play an important role in the future in terms of improving local community health planning practice. However, the findings also indicate that decision-making processes are not merely informed by using the HDSS tool. Instead, they seem to enhance the overall sense of collaboration in health planning practice. Thus, to support the Healthy Cities approach, communities will need to encourage decision-making based on the use of evidence, participation and consensus, which subsequently transfers into informed actions.
Resumo:
Conventional planning and decision making, with its sectoral and territorial emphasis and flat-map based processes are no longer adequate or appropriate for the increased complexity confronting airport/city interfaces. These crowed and often contested governance spaces demand a more iterative and relational planning and decision-making approach. Emergent GIS based planning and decision-making tools provide a mechanism which integrate and visually display an array of complex data, frameworks and scenarios/expectations, often in ‘real time’ computations. In so doing, these mechanisms provide a common ground for decision making and facilitate a more ‘joined-up’ approach to airport/city planning. This paper analyses the contribution of the Airport Metropolis Planning Support System (PSS) to sub-regional planning in the Brisbane Airport case environment.
Measuring neighbourhood sustainability performance: an indexing model for Gold Coast City, Australia
Resumo:
The aim of this research is to develop an indexing model to evaluate sutainability performance of urban settings, in order to assess environmental impacts of urban development and to provide planning agencies an indexing model as a decision support tool to be used in curbing negative impacts of urban development. Indicator-based sustainability assessment is embraced as the method. Neigbourhood-level urban form and transport related indicators are derived from the literature by conducting a content analysis and finalised via a focus group meeting. The model is piloted on three suburbs of Gold Coast City, Australia. Final neighbourhood level sustainability index score was calculated by employing equal weighting schema. The results of the study show that indexing modelling is a reasonably practical method to measure and visualise local sustainability performance, which can be employed as an effective communication and decision making tool.
The association between objectively measured neighborhood features and walking in middle-aged adults
Resumo:
Purpose: To explore the role of the neighborhood environment in supporting walking Design: Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting: The Brisbane City Local Government Area, Australia, 2007. Subjects: Brisbane residents aged 40 to 65 years. Measures Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis: The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results: After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion: The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.
Resumo:
Background: Access to cardiac services is essential for appropriate implementation of evidence-based therapies to improve outcomes. The Cardiac Accessibility and Remoteness Index for Australia (Cardiac ARIA) aimed to derive an objective, geographic measure reflecting access to cardiac services. Methods: An expert panel defined an evidence-based clinical pathway. Using Geographic Information Systems (GIS), a numeric/alpha index was developed at two points along the continuum of care. The acute category (numeric) measured the time from the emergency call to arrival at an appropriate medical facility via road ambulance. The aftercare category (alpha) measured access to four basic services (family doctor, pharmacy, cardiac rehabilitation, and pathology services) when a patient returned to their community. Results: The numeric index ranged from 1 (access to principle referral center with cardiac catheterization service ≤ 1 hour) to 8 (no ambulance service, > 3 hours to medical facility, air transport required). The alphabetic index ranged from A (all 4 services available within 1 hour drive-time) to E (no services available within 1 hour). 13.9 million (71%) Australians resided within Cardiac ARIA 1A locations (hospital with cardiac catheterization laboratory and all aftercare within 1 hour). Those outside Cardiac 1A were over-represented by people aged over 65 years (32%) and Indigenous people (60%). Conclusion: The Cardiac ARIA index demonstrated substantial inequity in access to cardiac services in Australia. This methodology can be used to inform cardiology health service planning and the methodology could be applied to other common disease states within other regions of the world.
Resumo:
The Cardiac Access-Remoteness Index of Australia (Cardiac ARIA) used geographic information systems (GIS) to model population level, road network accessibility to cardiac services before and after a cardiac event for all (20,387) population localities in Australia., The index ranged from 1A (access to all cardiac services within 1 h driving time) to 8E (limited or no access). The methodology derived an objective geographic measure of accessibility to required cardiac services across Australia. Approximately 71% of the 2006 Australian population had very good access to acute hospital services and services after hospital discharge. This GIS model could be applied to other regions or health conditions where spatially enabled data were available.
Resumo:
Cardiovascular disease (CVD) continues to impose a heavy burden in terms of cost, disability and death in Australia. Evidence suggests that increasing remoteness, where cardiac services are scarce, is linked to an increased risk of dying from CVD. Fatal CVD events are reported to be between 20% and 50% higher in rural areas compared to major cities. The Cardiac ARIA project, with its extensive use of geographic Information Systems (GIS), ranks each of Australia’s 20,387 urban, rural and remote population centres by accessibility to essential services or resources for the management of a cardiac event. This unique, innovative and highly collaborative project delivers a powerful tool to highlight and combat the burden imposed by cardiovascular disease (CVD) in Australia. Cardiac ARIA is innovative. It is a model that could be applied internationally and to other acute and chronic conditions such as mental health, midwifery, cancer, respiratory, diabetes and burns services. Cardiac ARIA was designed to: 1. Determine by expert panel, what were the minimal services and resources required for the management of a cardiac event in any urban, rural or remote population locations in Australia using a single patient pathway to access care. 2. Derive a classification using GIS accessibility modelling for each of Australia’s 20,387 urban, rural and remote population locations. 3. Compare the Cardiac ARIA categories and population locations with census derived population characteristics. Key findings are as follows: • In the event of a cardiac emergency, the majority of Australians had very good access to cardiac services. Approximately 71% or 13.9 million people lived within one hour of a category one hospital. • 68% of older Australians lived within one hour of a category one hospital (Principal Referral Hospital with access to Cardiac Catheterisation). • Only 40% of indigenous people lived within one hour of the category one hospital. • 16% (74000) of indigenous people lived more than one hour from a hospital. • 3% (91,000) of people 65 years of age or older lived more than one hour from any hospital or clinic. • Approximately 96%, or 19 million, of people lived within one hour of the four key services to support cardiac rehabilitation and secondary prevention. • 75% of indigenous people lived within one hour of the four cardiac rehabilitation services to support cardiac rehabilitation and secondary prevention. Fourteen percent (64,000 persons) indigenous people had poor access to the four key services to support cardiac rehabilitation and secondary prevention. • 12% (56,000) of indigenous people were more than one hour from a hospital and only had access one the four key services (usually a medical service) to support cardiac rehabilitation and secondary prevention.
Resumo:
Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.
Resumo:
Background: Timely access to appropriate cardiac care is critical for optimising outcomes. Our aim was to derive an objective, comparable, geographic measure reflecting access to cardiac services for Australia's 20,387 population locations. Methods: An expert panel defined a single patient care pathway. Using geographic information systems (GIS) the numeric/alpha index was modelled in two phases. The acute phase index (numeric) ranged from 1 (access to tertiary centre with PCI ≤1 h) to 8 (no ambulance service, >3 h to medical facility, air transport required). The aftercare index was modelled into 5 alphabetic categories; A (Access to general practitioner, pharmacy, cardiac rehabilitation, pathology ≤1 h) to E (no services available within 1 h). Results: Approximately 70% or 13.9 million people lived within a CardiacARIAindex category 1A location. Disparity continues in access to category 1A cardiac services for 5.8 million (30%) of all Australians, 60% of Aboriginal and Torres Strait Islander people and 32% of people over 65 years of age. In a cardiac emergency only 40% of the Indigenous population reside within one hour of category 1 hospital. Approximately 30% (81,491 Indigenous persons) are more than one to three hours from basic cardiac services. Conclusion: Geographically, the majority of Australian's have timely access for survival of a cardiac event. The CardiacARIAindex objectively demonstrates that the healthcare system may not be providing for the needs of 60% of Indigenous people residing outside the 1A geographic radius. Innovative clinical practice maybe required to address these disparities.
Resumo:
Background/aims: Access to appropriate health care following an acute cardiac event is important for positive outcomes. The aim of the Cardiac ARIA index was to derive an objective, comparable, geographic measure reflecting access to cardiac services across Australia. Methods: Geographic Information Systems (GIS) were used to model a numeric-alpha index based on acute management from onset of symptoms to return to the community. Acute time frames have been calculated to include time for ambulance to arrive, assess and load patient, and travel to facility by road 40–80 kph. Results: The acute phase of the index was modelled into five categories: 1 [24/7 percutaneous cardiac intervention (PCI) ≤1 h]; 2 [24/7 PCI 1–3 h, and PCI less than an additional hour to nearest accident and emergency room (A&E)]: 3 [Nearest A&E ≤3 h (no 24/7 PCI within an extra hour)]: 4 [Nearest A&E 3–12 h (no 24/7 PCI within an extra hour)]: 5 [Nearest A&E 12–24 h (no 24/7 PCI within an extra hour)]. Discharge care was modelled into three categories based on time to a cardiac rehabilitation program, retail pharmacy, pathology services, hospital, GP or remote clinic: (A) all services ≤30 min; (B) >30 min and ≤60 min; (C) >60 min. Examples of the index indicate that the majority of population locations within capital cities were category 1A; Alice Springs and Byron Bay were 3A; and the Northern Territory town of Maningrida had minimal access to cardiac services with an index ranking of 5C. Conclusion: The Cardiac ARIA index provides an invaluable tool to inform appropriate strategies for the use of scarce cardiac resources.
Resumo:
Background: There are inequalities in geographical access and delivery of health care services in Australia, particularly for cardiovascular disease (CVD), Australia's major cause of death. Analyses and models that can inform and positively influence strategies to augment services and preventative measures are needed. The Cardiac-ARIA project is using geographical spatial technology (GIS) to develop a national index for each of Australia's 13,000 population centres. The index will describe the spatial distribution of CVD health care services available to support populations at risk, in a timely manner, after a major cardiac event. Methods: In the initial phase of the project, an expert panel of cardiologists and an emergency physician have identified key elements of national and international guidelines for management of acute coronary syndromes, cardiac arrest, life-threatening arrhythmias and acute heart failure, from the time of onset (potentially dial 000) to return from the hospital to the community (cardiac rehabilitation). Results: A systematic search has been undertaken to identify the geographical location of, and type of, cardiac services currently available. This has enabled derivation of a master dataset of necessary services, e.g. telephone networks, ambulance, RFDS, helicopter retrieval services, road networks, hospitals, general practitioners, medical community centres, pathology services, CCUs, catheterisation laboratories, cardio-thoracic surgery units and cardiac rehabilitation services. Conclusion: This unique and innovative project has the potential to deliver a powerful tool to both highlight and combat the burden of disease of CVD in urban and regional Australia.
Resumo:
In the last few decades, the focus on building healthy communities has grown significantly (Ashton, 2009). There is growing evidence that new approaches to planning are required to address the challenges faced by contemporary communities. These approaches need to be based on timely access to local information and collaborative planning processes (Murray, 2006; Scotch & Parmanto, 2006; Ashton, 2009; Kazda et al., 2009). However, there is little research to inform the methods that can support this type of responsive, local, collaborative and consultative health planning (Northridge et al., 2003). Some research justifies the use of decision support systems (DSS) as a tool to support planning for healthy communities. DSS have been found to increase collaboration between stakeholders and communities, improve the accuracy and quality of the decision-making process, and improve the availability of data and information for health decision-makers (Nobre et al., 1997; Cromley & McLafferty, 2002; Waring et al., 2005). Geographic information systems (GIS) have been suggested as an innovative method by which to implement DSS because they promote new ways of thinking about evidence and facilitate a broader understanding of communities. Furthermore, literature has indicated that online environments can have a positive impact on decision-making by enabling access to information by a broader audience (Kingston et al., 2001). However, only limited research has examined the implementation and impact of online DSS in the health planning field. Previous studies have emphasised the lack of effective information management systems and an absence of frameworks to guide the way in which information is used to promote informed decisions in health planning. It has become imperative to develop innovative approaches, frameworks and methods to support health planning. Thus, to address these identified gaps in the knowledge, this study aims to develop a conceptual planning framework for creating healthy communities and examine the impact of DSS in the Logan Beaudesert area. Specifically, the study aims to identify the key elements and domains of information that are needed to develop healthy communities, to develop a conceptual planning framework for creating healthy communities, to collaboratively develop and implement an online GIS-based Health DSS (i.e., HDSS), and to examine the impact of the HDSS on local decision-making processes. The study is based on a real-world case study of a community-based initiative that was established to improve public health outcomes and promote new ways of addressing chronic disease. The study involved the development of an online GIS-based health decision support system (HDSS), which was applied in the Logan Beaudesert region of Queensland, Australia. A planning framework was developed to account for the way in which information could be organised to contribute to a healthy community. The decision support system was developed within a unique settings-based initiative Logan Beaudesert Health Coalition (LBHC) designed to plan and improve the health capacity of Logan Beaudesert area in Queensland, Australia. This setting provided a suitable platform to apply a participatory research design to the development and implementation of the HDSS. Therefore, the HDSS was a pilot study examined the impact of this collaborative process, and the subsequent implementation of the HDSS on the way decision-making was perceived across the LBHC. As for the method, based on a systematic literature review, a comprehensive planning framework for creating healthy communities has been developed. This was followed by using a mixed method design, data were collected through both qualitative and quantitative methods. Specifically, data were collected by adopting a participatory action research (PAR) approach (i.e., PAR intervention) that informed the development and conceptualisation of the HDSS. A pre- and post-design was then used to determine the impact of the HDSS on decision-making. The findings of this study revealed a meaningful framework for organising information to guide planning for healthy communities. This conceptual framework provided a comprehensive system within which to organise existing data. The PAR process was useful in engaging stakeholders and decision-making in the development and implementation of the online GIS-based DSS. Through three PAR cycles, this study resulted in heightened awareness of online GIS-based DSS and openness to its implementation. It resulted in the development of a tailored system (i.e., HDSS) that addressed the local information and planning needs of the LBHC. In addition, the implementation of the DSS resulted in improved decision- making and greater satisfaction with decisions within the LBHC. For example, the study illustrated the culture in which decisions were made before and after the PAR intervention and what improvements have been observed after the application of the HDSS. In general, the findings indicated that decision-making processes are not merely informed (consequent of using the HDSS tool), but they also enhance the overall sense of ‗collaboration‘ in the health planning practice. For example, it was found that PAR intervention had a positive impact on the way decisions were made. The study revealed important features of the HDSS development and implementation process that will contribute to future research. Thus, the overall findings suggest that the HDSS is an effective tool, which would play an important role in the future for significantly improving the health planning practice.
Resumo:
The main factors affecting environmental sensitivity to degradation are soil, vegetation, climate and management, through either their intrinsic characteristics or by their interaction on the landscape. Different levels of degradation risks may be observed in response to particular combinations of the aforementioned factors. For instance, the combination of inappropriate management practices and intrinsically weak soil conditions will result in a severe degradation of the environment, while the combination of the same type of management with better soil conditions may lead to negligible degradation.The aim of this study was to identify factors and their impact on land degradation processes in three areas of the Basilicata region (southern Italy) using a procedure that couples environmental indices, GIS and crop-soil simulation models. Areas prone to desertification were first identified using the Environmental Sensitive Areas (ESA) procedure. An analysis for identifying the weight that each of the contributing factor (climate, soil, vegetation, management) had on the ESA was carried out using GIS techniques. The SALUS model was successfully executed to identify the management practices that could lead to better soil conditions to enhance land use sustainability. The best management practices were found to be those that minimized soil disturbance and increased soil organic carbon. Two alternative scenarios with improved soil quality and subsequently improving soil water holding capacity were used as mitigation measures. The ESA were recalculated and the effects of the mitigation measures suggested by the model were assessed. The new ESA showed a significant reduction on land degradation.