837 resultados para GA (Genetic Algorithm)
Resumo:
为提高理性遗传算法遗传信息的完备性、算法全局收敛性以及算法的整体结构,给出了一个更一般化的理性算子和算法结构,证明了算法的全局收敛性.理论分析和在运动规划问题中的应用结果验证了理性遗传算法的有效性.
Resumo:
介绍了基于模型的位姿估计中所使用的一些优化方法。为了提高位姿估计的精度,摄像机的标定参数必须足够精确,这就对标定过程的非线性优化算法提出了很高的要求,采用了一种新的优化目标函数,用来最小化控制点间的三维重建误差,从而使标定参数是全局最优;在双像机位姿估计中,引入了实时遗传算法进行全局搜索,加快了算法的收敛速度。最后的实验证明了这些方法的正确性并显示出这些方法在精度上比传统方法有了较大程度的提高。
Resumo:
给出了以混凝土泵车各臂油缸长度为参变量的布料机构浇筑过程的轨迹规划计算方法。在解决布料机构运动学分析的逆问题时 ,采用了基于多峰值并行搜索的遗传算法来求解最优控制优化目标函数 ,并对施工过程进行了仿真
Resumo:
针对以测距声纳为避碰传感器的一类欠驱动型AUV,提出了一种水平面和垂直面相结合的三维实时避碰方法。根据测距声纳和欠驱动AUV 的特殊性,首先从运动规划和路径规划2 个层次提出了AUV 混合型实时避碰结构,并分别设计了基于事件反馈监控的避碰自动机和基于免疫遗传的局部路径规划算法。多种典型障碍场景的半物理仿真实验表明,论文所提方法能够实现AUV 安全、稳定的三维避碰过程。
Resumo:
针对传统遗传算法在编码方案及交叉操作中存在的局限性,提出了一种新的遗传算法的改进 方法.该方法(1)以实数编码代替二进制编码,有效地解决了传统遗传算法中二进制编码串的长度与 计算精度、运算量之间的矛盾,(2)根据适应度值对父染色体进行重组操作,克服了传统遗传算法中 交叉操作所存在的盲目性.最后,以求解自然对数和神经网络的训练为例验证了所提出方法的有效 性.
Resumo:
本文在分析简单遗传算法 (Simple Genetic Algorithm,SGA)的基础上 ,提出了一种新型结构的两代竞争遗传算法 ,并给出了算法演进的模式定理 .通过理论分析和对 TSP(TravelSalesman Problem,TSP)问题的应用研究 ,表明了该算法具有搜索效率高、鲁棒性强的特点
Resumo:
在介绍了由文献[1,8]提出来的带有对称编码的基因算法后,本文进一步讨论了这种基因算法中采用的部分基因保留技术和“移民”技术对算法性能的影响,确定了“移民”技术的3个必须步骤、最佳基因保留量(25%)及其选择范围(20~50%).对算法的计算机实验所得到的结果表明,如果不采用这两项技术,带有对称编码的基因算法的性能就会降低,所得到的解的质量就会下降,有时甚至会使新的基因算法表现的象传统的基因算法一样,对象机器人的动力学优化控制这样的问题无能为力。
Resumo:
在香烟包装过程中会出现不合格现象,通过对缺陷的分析,设计了一种用于香烟包装质量检测的改进快速图像匹配算法。文中通过优化相关系数的计算、引入自适应遗传算法、对感兴趣区域匹配检测来提高算法性能,并将算法在MATLAB中编程实现。仿真实验结果表明该图像匹配算法计算速度快、检测精度高,满足香烟包装质量检测的需要。
Resumo:
针对多品种批量生产类型,建立了调度约束的生产计划与调度集成优化模型。模型的目标函数是使总调整费用、库存费用及生产费用之和最小,约束函数包括库存平衡约束和生产能力约束,同时考虑了调度约束,即工序顺序约束和工件在单机上的加工能力约束,保证了计划可行性。该模型为两层混合整数规划模型,对其求解综合运用了遗传算法和启发式规则,提出了混合启发式求解算法。最后,针对某机床厂多品种批量生产类型车间进行了实例应用,对车间零件月份作业计划进行分解,得到各工段单元零件周作业计划,确定了零件各周生产批量与投产顺序。
Resumo:
以整车销售物流为背景,探讨多仓库带时窗约束的车辆路线安排问题的解决方法.提出了更为复杂的基于现实的细节性要求的多配送中心开路VRPTW问题模型,并将遗传算法产生部分解和评估完整解的优化解决方法和涌现交叉算子MX1引入到带时窗的多仓库VRP问题优化中,实现了快速全局优化.提出的开路混合配送方法有利于提高车辆满载率,降低回程空载率.同时实现了运输资源的优化配置,提高车辆利用率.计算机仿真实验证明了算法的可行性.
Resumo:
Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.
Resumo:
The receiver function method applied in researching the discontinuities in upper mantle was systematically studied in this paper. Using the theoretical receiver functions, the characteristics of P410S and P660S phases were analyzed, and the influencing factors for detection of these phases were discussed. The stability of receiver function was studied, and a new computational method of receiver function, RFSSMS (Receiver Function of Stack and Smooth of Multi seismic-records at a Single station), was put forward. We built initial reference velocity model for the media beneath each of 18 seismic stations respectively; then estimated the buried depths of 410-km and 660-km discontinuities(simply marked as '410' and '660') under the stations by using the arrive time differences of P410S and P660S with P. We developed a new receiver function inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion), to obtain the whole crust and upper mantle velocity structure and the depths of discontinuities beneath a station. The major works and results could be summarized as follows: (1) By analysis of the theoretical receiver functions with different velocity models and different ray parameters, we obtain the knowledge: The amplitudes of P410S and P660S phases are decreasing with the increasing of epicentral distance A , and the arrival time differences of these phases with P are shorter as A is longer. The multiple refracted and/or reflected waves yielded on Moho and the discontinuities in the crust interfere the identification of P410S. If existing LVZ under the lithosphere, some multiple waves caused by LVZ will interfere the identification of P410S. The multiple waves produced by discontinuity lied near 120km depth will mix with P410s phase in some range of epicentral distance; and the multiple waves concerned with the discontinuity lied near 210km depth will interfere the identification of P660S. The epicentral distance for P4i0s identification is limited, the upper limit is 80° . The identification of P660S is not restricted by the epicenter distance obviously. The identification of P410S and P6gos in the theoretical receiver functions is interfered weakly from the seismic wave attenuation caused by the media absorption if the Q value in a reasonable range. (2) The stability of receiver function was studied by using synthetic seismograms with different kind of noise. The results show that on the condition of high signal-noise-ratio of seismic records, the high frequency background noise and the low frequency microseism noise do not influence the calculating result of receiver function. But the media "scattering noise" influence the stability of receiver function. When the scattering effect reach some level, the identification of P4iOs and P66os is difficult in single receiver function which is yielded from only one seismic record. We provided a new method to calculate receiver function, that is, with a group of earthquake records, stacking the R and Z components respectively in the frequency domain, and weighted smooth the stacked Z component, then compute the complex spectrum ratio of R to Z. This method can improve the stability of receiver function and protrude the P4i0s and P66os in the receiver function curves. (3) 263 receiver functions were provided from 1364 three component broadband seismograms recorded at 18 stations in China and adjacent areas for the tele-earthquakes. The observed arrival time differences of P410S and P660S with P were obtained in these receiver functions. The initial velocity model for every station was built according to the prior research results. The buried depths of '410' and '660' under a station were acquired by the way of adjusting the depths of these two discontinuities in the initial velocity model until the theoretical arrival time differences of P410S and P660S with P well conformed to the observed. The results show an obvious lateral heterogeneity of buried depths of ' 410' and (660' . The depth of '410' is shallower beneath BJI, XAN, LZH and ENH, but deeper under QIZ and CHTO, and the average is 403km . The average depth of '660' is 663km, deeper under MDJ and MAJO, but shallower under QIZ and HYB. (4) For inversing the whole crust and upper mantle velocity structure, a new inversion method -PGARFI (Peeling-Genetic Algorithm of Receiver Function Inversion) has- been developed here. The media beneath a station is divided into segments, then the velocity structure is inversed from receiver function from surface to deep successively. Using PGARFI, the multi reflection / refraction phases of shallower discontinuities are isolated from the first order refraction transform phase of deep discontinuity. The genetic algorithm with floating-point coding was used hi the inversion of every segment, and arithmetical crossover and non-uniform mutation technologies were employed in the genetic optimization. 10 independent inversions are completed for every segment, and 50 most excellent velocity models are selected according to the priority of fitness from all models produced in the inversion process. The final velocity structure of every segment is obtained from the weighted average of these 50 models. Before inversion, a wide range of velocity variation with depth and depth range of the main discontinuities are given according to priori knowledge. PGARFI was verified with numerical test and applied in the inversion of the velocity structure beneath HIA station down to 700km depth.
Resumo:
Reducing the energy consumption of water distribution networks has never had more significance. The greatest energy savings can be obtained by carefully scheduling the operations of pumps. Schedules can be defined either implicitly, in terms of other elements of the network such as tank levels, or explicitly by specifying the time during which each pump is on/off. The traditional representation of explicit schedules is a string of binary values with each bit representing pump on/off status during a particular time interval. In this paper, we formally define and analyze two new explicit representations based on time-controlled triggers, where the maximum number of pump switches is established beforehand and the schedule may contain less switches than the maximum. In these representations, a pump schedule is divided into a series of integers with each integer representing the number of hours for which a pump is active/inactive. This reduces the number of potential schedules compared to the binary representation, and allows the algorithm to operate on the feasible region of the search space. We propose evolutionary operators for these two new representations. The new representations and their corresponding operations are compared with the two most-used representations in pump scheduling, namely, binary representation and level-controlled triggers. A detailed statistical analysis of the results indicates which parameters have the greatest effect on the performance of evolutionary algorithms. The empirical results show that an evolutionary algorithm using the proposed representations improves over the results obtained by a recent state-of-the-art Hybrid Genetic Algorithm for pump scheduling using level-controlled triggers.
Resumo:
Walker,J. and Wilson,M.S., 'How Useful is Lifelong Evolution for Robotics', Proceedings of the 7th International Conference on Simulation of Adaptive Behaviour, ed Hallam,B. and Floreano,D. and Hallam,J. and Hayes,G. and Meyer,J.A., pp 347-348, 2002, MIT Press
Resumo:
M. Galea and Q. Shen. Fuzzy rules from ant-inspired computation. Proceedings of the 13th International Conference on Fuzzy Systems, pages 1691-1696, 2004.