558 resultados para Enhancer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Embryo implantation into the endometrium is a complex biological process involving the integration of steroid hormone signaling, endometrial tissue remodeling and maternal- fetal communications. A successful pregnancy is the outcome of the timely integration of these events during the early stages of implantation. The involvement of ovarian steroid hormones, estrogen (E) and progesterone (P), acting through their cognate receptors, is essential for uterine functions during pregnancy. The molecular mechanisms that control the process of implantation are undergoing active exploration. Through our recent efforts, we identified the transcription factor, CCAAT Enhancer Binding Protein Beta (C/EBPb) as a prominent target of estrogen and progesterone signaling in the uterus. The development of a C/EBPb-null mouse model, which is infertile, presented us with an opportunity to analyze the role of this molecule in uterine function. We discovered that C/EBPb functions in two distinct manners: (i) by acting as a mediator of E-induced proliferation of the uterine epithelium and (ii) by controlling uterine stromal cell differentiation, a process known as decidualization, during pregnancy. My studies have delineated important mechanisms by which E regulates C/EBPb expression to induce DNA replication and prevent apoptosis of uterine epithelial cells during E-induced epithelial growth. In subsequent studies, I analyzed the role of C/EBPb in decidualization and uncovered a unique mechanism by which C/EBPb regulates the synthesis of a unique laminin-containing extracellular matrix (ECM) that supports stromal cell differentiation and embryo invasion. In order to better define the role of laminin in implantation, we developed a laminin gamma 1-conditional knockout mouse model. This is currently an area of ongoing investigation. The information gained from our analysis of C/EBPb function in the uterus provides new insights into the mechanisms of steroid hormone action during early pregnancy. Ultimately, our findings may aid in the understanding of dysregulation of hormone-controlled pathways that underlie early pregnancy loss and infertility in women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tasmannia lanceolata, commonly known as Tasmanian pepper leaf or mountain pepper, is an Australian native plant that produces an essential oil with a characteristic pungent flavor attributed to the sesquiterpene polygodial. The dried and fresh leaves are used in culinary applications. The essential oil is produced by a solvent extraction process, and the resultant concrete is a rich source of the principal pungent molecule polygodial and other volatiles. The Tasmanian pepper leaf extract has broad-spectrum antimicrobial activity and is very effective against fungi, especially yeasts. This demonstrates its potential to be used in the food industry as a natural preservative. Indigenous Australians have used Tasmanian pepper leaves for therapeutic purposes; in recent times, it is been used as a flavoring agent and enhancer of pungency in food products. This chapter covers the use of Tasmanian pepper leaf essential oil in food applications, its botanical aspects, and its chemical composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabinoids (CBs) can be classified as: phytocannabinoids, the constituents of the Cannabis sativa plant; synthetic cannabinoids lab-synthesized and the endocannabinoids that are endogenous lipid mediators. Cannabinoid compounds activate cannabinoid receptors – CB1 and CB2. The most prevalent psychoactive phytocannabinoid is Δ9tetrahydrocannabinol (THC), but more than 60 different CBs were already identified in the plant. The best characterized endocannabinoids (eCBs) are anandamide (AEA) and 2arachidonoylglycerol (2-AG), that are involved in several physiological processes including synaptic plasticity, pain modulation, energy homeostasis and reproduction. On the other hand, some synthetic cannabinoids that were initially designed for medical research, are now used as drugs of abuse. During the period of placental development, highly dynamic processes of remodeling occur, involving proliferation, apoptosis, differentiation and invasion of trophoblasts. It is known that a tight control of eCBs levels is required for normal pregnancy progression and that eCBs are involved in trophoblast cells turnover. Therefore, by sharing activation of the same receptors, exposure to exocannabinoids either by recreational or medicinal use may lead to alterations in the eCBs levels and in the endocannabinoid system homeostasis In this work, it was studied the impact of CBs in BeWo trophoblastic cells and in primary cultures of human cytotrophoblasts. Cells were treated for 24 hours with different concentrations of THC, the synthetic cannabinoid WIN‐55,212 (WIN) and 2-AG. Treatment with THC did not affect BeWo cells viability while WIN and 2-AG caused a dose-dependent viability loss. Morphological studies together with biochemical markers indicate that 2-AG is able to induce apoptosis in cytotrophoblasts. On the other hand, morphological studies after acridine orange staining suggest that autophagy may take part in WIN-induced loss of cell viability. All cannabinoids caused a decrease in mitochondrial membrane potential (Δψm) but only 2-AG led to ROS/RNS generation, though no changes in glutathione levels were observed. In addition, ER-stress may be involved in the 2-AG induced-oxidative stress, as preliminary results point to an increase in CCAAT-enhancer-binding protein homologous protein (CHOP) expression. Besides the decrease in cell viability, alterations in cell cycle progression were observed. WIN treatment induced a cell cycle arrest in G0/G1 phase, whereas 2-AG induced a cell cycle arrest in G2/M phase. Here it is reinforced the relevance of cannabinoid signaling in fundamental processes of cell proliferation and cell death in trophoblast cells. Since cannabis-based drugs are the most consumed illicit drugs worldwide and some of the most consumed recreational drugs by pregnant women, this study may contribute to the understanding of the impact of such substances in human reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tendo em conta um enfoque comunicativo experiencial (Fernández- Corbacho, 2014) e uma pedagogia crítica emancipatória (Jiménez Raya, Lamb & Vieira, 2007), enriquecida por enfoques multissensoriais (Arslan, 2009), é nossa intenção, com este projeto, contribuir para a implementação de práticas que espelhem as variedades linguísticas e culturais da Hispanoamérica (Liceras, 1995; Beave, 2000) na aula de espanhol como língua estrangeira no ensino secundário português. Neste estudo, através duma perspetiva metodológica de índole qualitativa, pretendemos, como ponto de partida, analisar: a) as representações de alunos portugueses sobre o lugar da Hispanoamérica no processo de ensino-aprendizagem de espanhol como língua estrangeira (Altmann & Vences, 2004; Pérez, 2003), através de inquéritos por questionário; e, ainda, b) as abordagens das variedades linguísticas e culturais do espanhol, que surgem nos manuais utilizados no ensino secundário português. Por outro lado, através de um estudo de caso (Benson, Chik, Gao, Huang & Wang, 2009), procurámos evidenciar uma mostra de possíveis boas práticas didático-pedagógicas e materiais, com vista a um trabalho sistemático e próativo com as variedades linguísticas e culturais do espanhol, baseado numa (hiper)pedagogia crítica e encarando a língua enquanto objeto manipulável e potenciador de cidadãos verdadeiramente conscientes do mundo. Para tal, criámos materiais físicos e digitais, que foram posteriormente implementados com alunos do 11º ano de escolaridade, no nível de iniciação de espanhol, num agrupamento de escolas da região de Aveiro. Os resultados mostram que práticas e materiais desta natureza poderão favorecer aprendizagens comunicativas experienciais, quanto à criação de futuros cidadãos críticos e ativos, fomentando o desenvolvimento das suas competências comunicativa plurilingue e pluricultural e duma consciência cultural crítica (Byram, Gribkova & Starkey, 2002) dos alunos, no contexto de ensino-aprendizagem do ensino secundário.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hematopoiesis is the tightly controlled and complex process in which the entire blood system is formed and maintained by a rare pool of hematopoietic stem cells (HSCs), and its dysregulation results in the formation of leukaemia. TRIB2, a member of the Tribbles family of serine/threonine pseudokinases, has been implicated in a variety of cancers and is a potent murine oncogene that induces acute myeloid leukaemia (AML) in vivo via modulation of the essential myeloid transcription factor CCAAT-enhancer binding protein α (C/EBPα). C/EBPα, which is crucial for myeloid cell differentiation, is commonly dysregulated in a variety of cancers, including AML. Two isoforms of C/EBPα exist - the full-length p42 isoform, and the truncated oncogenic p30 isoform. TRIB2 has been shown to selectively degrade the p42 isoform of C/EBPα and induce p30 expression in AML. In this study, overexpression of the p30 isoform in a bone marrow transplant (BMT) leads to perturbation of myelopoiesis, and in the presence of physiological levels of p42, this oncogene exhibited weak transformative ability. It was also shown by BMT that despite their degradative relationship, expression of C/EBPα was essential for TRIB2 mediated leukaemia. A conditional mouse model was used to demonstrate that oncogenic p30 cooperates with TRIB2 to reduce disease latency, only in the presence of p42. At the molecular level, a ubiquitination assay was used to show that TRIB2 degrades p42 by K48-mediated proteasomal ubiquitination and was unable to ubiquitinate p30. Mutation of a critical lysine residue in the C-terminus of C/EBPα abrogated TRIB2 mediated C/EBPα ubiquitination suggesting that this site, which is frequently mutated in AML, is the site at which TRIB2 mediates its degradative effects. The TRIB2-C/EBPα axis was effectively targeted by proteasome inhibition. AML is a very difficult disease to target therapeutically due to the extensive array of chromosomal translocations and genetic aberrations that contribute to the disease. The cell from which a specific leukaemia arises, or leukaemia initiating cell (LIC), can affect the phenotype and chemotherapeutic response of the resultant disease. The LIC has been elucidated for some common oncogenes but it is unknown for TRIB2. The data presented in this thesis investigate the ability of the oncogene TRIB2 to transform hematopoietic stem and progenitor cells in vitro and in vivo. TRIB2 overexpression conferred in vitro serially replating ability to all stem and progenitor cells studied. Upon transplantation, only TRIB2 overexpressing HSCs and granulocyte/macrophage progenitors (GMPs) resulted in the generation of leukaemia in vivo. TRIB2 induced a mature myeloid leukaemia from the GMP, and a mixed lineage leukaemia from the HSC. As such the role of TRIB2 in steady state hematopoiesis was also explored using a Trib2-/- mouse and it was determined that loss of Trib2 had no effect on lineage distribution in the hematopoietic compartment under steady-state conditions. The process of hematopoiesis is controlled by a host of lineage restricted transcription factors. Recently members of the Nuclear Factor 1 family of transcription factors (NFIA, NFIB, NFIC and NFIX) have been implicated in hematopoiesis. Little is known about the role of NFIX in lineage determination. Here we describe a novel role for NFIX in lineage fate determination. In human and murine datasets the expression of Nfix was shown to decrease as cells differentiated along the lymphoid pathway. NFIX overexpression resulted in enhanced myelopoiesis in vivo and in vitro and a block in B cell development at the pre-pro-B cell stage. Loss of NFIX resulted in disruption of myeloid and lymphoid differentiation in vivo. These effects on stem and progenitor cell fate correlated with changes in the expression levels of key transcription factors involved in hematopoietic differentiation including a 15-fold increase in Cebpa expression in Nfix overexpressing cells. The data presented support a role for NFIX as an important transcription factor influencing hematopoietic lineage specification. The identification of NFIX as a novel transcription factor influencing lineage determination will lead to further study of its role in hematopoiesis, and contribute to a better understanding of the process of differentiation. Elucidating the relationship between TRIB2 and C/EBPα not only impacts on our understanding of the pathophysiology of AML but is also relevant in other cancer types including lung and liver cancer. Thus in summary, the data presented in this thesis provide important insights into key areas which will facilitate the development of future therapeutic approaches in cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) involves the proliferation, abnormal survival and arrest of cells at a very early stage of myeloid cell differentiation. The biological and clinical heterogeneity of this disease complicates treatment and highlights the significance of understanding the underlying causes of AML, which may constitute potential therapeutic targets, as well as offer prognostic information. Tribbles homolog 2 (Trib2) is a potent murine oncogene capable of inducing transplantable AML with complete penetrance. The pathogenicity of Trib2 is attributed to its ability to induce proteasomal degradation of the full length isoform of the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα p42). The role of TRIB2 in human AML cells, however, has not been systematically investigated or targeted. Across human cancers, TRIB2 oncogenic activity was found to be associated with its elevated expression. In the context of AML, TRIB2 overexpression was suggested to be associated with the large and heterogeneous subset of cytogenetically normal AML patients. Based upon the observation that overexpression of TRIB2 has a role in cellular transformation, the effect of modulating its expression in human AML was examined in a human AML cell line that expresses high levels of TRIB2, U937 cells. Specific suppression of TRIB2 led to impaired cell growth, as a consequence of both an increase in apoptosis and a decrease in cell proliferation. Consistent with these in vitro results, TRIB2 silencing strongly reduced progression of the U937 in vivo xenografts, accompanied by detection of a lower spleen weight when compared with mice transplanted with TRIB2- expressing control cells. Gene expression analysis suggested that TRIB2 modulates apoptosis and cell-cycle sensitivity by influencing the expression of a subset of genes known to have implications on these phenotypes. Furthermore, TRIB2 was found to be expressed in a significant subset of AML patient samples analysed. To investigate whether increased expression of this gene could be afforded prognostic significance, primary AML cells with dichotomized levels of TRIB2 transcripts were evaluated in terms of their xenoengraftment potential, an assay reported to correlate with disease aggressiveness observed in humans. A small cohort of analysed samples with higher TRIB2 expression did not associate with preferential leukaemic cell engraftment in highly immune-deficient mice, hence, not predicting for an adverse prognosis. However, further experiments including a larger cohort of well characterized AML patients would be needed to clarify TRIB2 significance in the diagnostic setting. Collectively, these data support a functional role for TRIB2 in the maintenance of the oncogenic properties of human AML cells and suggest TRIB2 can be considered a rational therapeutic target. Proteasome inhibition has emerged as an attractive target for the development of novel anti-cancer therapies and results from translational research and clinical trials support the idea that proteasome inhibitors should be considered in the treatment of AML. The present study argued that proteasome inhibition would effectively inhibit the function of TRIB2 by abrogating C/EBPα p42 protein degradation and that it would be an effective pharmacological targeting strategy in TRIB2-positive AMLs. Here, a number of cell models expressing high levels of TRIB2 were successfully targeted by treatment with proteasome inhibitors, as demonstrated by multiple measurements that included increased cytotoxicity, inhibition of clonogenic growth and anti-AML activity in vivo. Mechanistically, it was shown that block of the TRIB2 degradative function led to an increase of C/EBPα p42 and that response was specific to the TRIB2-C/EBPα axis. Specificity was addressed by a panel of experiments showing that U937 cells (express detectable levels of endogenous TRIB2 and C/EBPα) treated with the proteasome inhibitor bortezomib (Brtz) displayed a higher cytotoxic response upon TRIB2 overexpression and that ectopic expression of C/EBPα rescued cell death. Additionally, in C/EBPα-negative leukaemia cells, K562 and Kasumi 1, Brtz-induced toxicity was not increased following TRIB2 overexpression supporting the specificity of the compound on the TRIB2-C/EBPα axis. Together these findings provide pre-clinical evidence that TRIB2- expressing AML cells can be pharmacologically targeted with proteasome inhibition due, in part, to blockage of the TRIB2 proteolytic function on C/EBPα p42. A large body of evidence indicates that AML arises through the stepwise acquisition of genetic and epigenetic changes. Mass spectrometry data has identified an interaction between TRIB2 and the epigenetic regulator Protein Arginine Methyltransferase 5 (PRMT5). Following assessment of TRIB2‟s role in AML cell survival and effective targeting of the TRIB2-C/EBPα degradation pathway, a putative TRIB2/PRMT5 cooperation was investigated in order to gain a deeper understanding of the molecular network in which TRIB2 acts as a potent myeloid oncogene. First, a microarray data set was interrogated for PRMT5 expression levels and the primary enzyme responsible for symmetric dimethylation was found to be transcribed at significantly higher levels in AML patients when compared to healthy controls. Next, depletion of PRMT5 in the U937 cell line was shown to reduce the transformative phenotype in the high expressing TRIB2 AML cells, which suggests that PRMT5 and TRIB2 may cooperate to maintain the leukaemogenic potential. Importantly, PRMT5 was identified as a TRIB2-interacting protein by means of a protein tagging approach to purify TRIB2 complexes from 293T cells. These findings trigger further research aimed at understanding the underlying mechanism and the functional significance of this interplay. In summary, the present study provides experimental evidence that TRIB2 has an important oncogenic role in human AML maintenance and, importantly in such a molecularly heterogeneous disease, provides the rational basis to consider proteasome inhibition as an effective targeting strategy for AML patients with high TRIB2 expression. Finally, the identification of PRMT5 as a TRIB2-interacting protein opens a new level of regulation to consider in AML. This work may contribute to our further understanding and therapeutic strategies in acute leukaemias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Alternative splicing of the small GTPase RAC1 generates RAC1b, a hyperactivated variant that is overexpressed in a subtype of colorectal tumors. The objective of our studies is to understand the molecular regulation of this alternative splicing event and how it contributes to tumorigenesis. Experimental description: The regulation of the RAC1b splicing event in human colon cell lines was dissected using a transfected RAC1 minigene and the role of upstream regulating protein kinases through an RNA interference approach. The functional properties of the RAC1b protein were characterized by experimental modulation of Rac1b levels in colon cell lines. Results: The RAC1b protein results from an in-frame inclusion of an additional alternative exon encoding 19 amino acids that change the regulation and signaling properties of the protein. RAC1b is a hyperactive variant that exists predominantly in the GTP-bound active conformation in vivo and promotes cell cycle progression and cell survival through activation of the transcription factor NF-κB. RAC1b overexpression functionally cooperates with the oncogenic mutation in BRAF-V600E to sustain colorectal tumor cell survival. The splicing factor SRSF1 was identified to bind an exonic splice enhancer element in the alternative exon and acts as a prime regulator of Rac1b alternative splicing in colorectal cells. SRSF1 is controlled by upstream protein kinase SRPK1, the inhibition or depletion of which led to reduced SRSF1 phosphorylation and nuclear translocation with a concomitant reduction in RAC1b levels. As further SRSF1-regulating pathways we discovered kinase GSK3 and a cyclooxygenase independent effect of the non-steroidal anti-inflammatory drug ibuprofen. Conclusions: Expression of tumor-related RAC1b in colorectal cancer depends critically on SRSF1 for the observed deregulation of alternative splicing during tumorigenesis and is controlled by upstream protein kinases that can be pharmacologically targeted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focalizando as dimensões humana e comportamental da gestão do conhecimento, a presente investigação visa uma análise do(s) impacto(s) (facilitador ou inibidor) dos pressupostos da gestão de recursos humanos no grau de aplicação da gestão do conhecimento em organizações industriais. Em particular, explora a(s) dinâmica(s) de influência entre a sofisticação dos pressupostos da formação profissional, da avaliação de desempenho e da gestão de recompensas na aplicação da gestão do conhecimento. Tendo em vista a medição dos constructos centrais do presente estudo, de acordo com a revisão de literatura efectuada, desenvolveram-se acções conducentes à adaptação de um questionário de gestão do conhecimento (GC), à construção, validação e desenvolvimento de três novos questionários (PPFP, PPAD e PPSR) que visaram aceder à percepção dos agentes organizacionais acerca dos pressupostos da gestão de recursos humanos vigentes ou culturalmente característicos do seu contexto laboral. O presente estudo envolveu múltiplas análises aos dados de 1364 questionários individuais auto-administrados e recolhidos em 55 empresas de quatro sub-sectores da cerâmica em Portugal. Para o estudo da relação linear entre um conjunto de variáveis preditoras e uma variável critério optou-se por realizar equações de regressão múltipla hierárquica, considerando-se dois blocos de variáveis. Num primeiro modelo foram introduzidas, apenas, as duas dimensões relativas à formação profissional medidas pelo instrumento PPFP e num segundo modelo aduziram-se as variáveis de avaliação de desempenho e de sistema de recompensas, especificamente, o primeiro factor retido na análise psicométrica dos instrumentos PPAD e PPSR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O relatório apresenta o trabalho desenvolvido durante o estágio na Câmara Municipal de Ferreira do Alentejo, objetivado pela obtenção do grau de mestre em Arquitetura Paisagista. Este trabalho pretende valorizar os princípios adquiridos ao longo do percurso académico em licenciatura e mestrado de Arquitetura Paisagista, na ilustre Universidade de Évora, e dar resposta ao objetivo proposto pela entidade acolhedora no presente estágio – a proposta de um percurso potenciador da Paisagem no espaço urbano de Ferreira do Alentejo; ABSTRACT: This report presents the work carried out during the internship at the municipality of Ferreira do Alentejo, which was objectified for obtainment of Master degree in Landscape Architecture. This work aims to enrich the principles acquired during the academic path with the graduation and master degree at the Évora University and to respond to the host institution objective for this internship - the proposal for a landscape enhancer pathway in urban areas of Ferreira do Alentejo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les cellules endothéliales forment une couche semi-perméable entre le sang et les organes. La prolifération, la migration et la polarisation des cellules endothéliales sont essentielles à la formation de nouveaux vaisseaux à partir de vaisseaux préexistants, soit l’angiogenèse. Le facteur de croissance de l’endothélium vasculaire (VEGF) peut activer la synthase endothéliale du monoxyde d’azote (eNOS) et induire la production de monoxyde d’azote (NO) nécessaire pour la régulation de la perméabilité vasculaire et l’angiogenèse. β- caténine est une composante essentielle du complexe des jonctions d’ancrage ainsi qu’un régulateur majeur de la voie de signalisation de Wnt/β-caténine dans laquelle elle se joint au facteur de transcription TCF/LEF et module l’expression de nombreux gènes, dont certains sont impliqués dans l’angiogenèse. La S-nitrosylation (SNO) est un mécanisme de régulation posttraductionnel des protéines par l’ajout d’un groupement nitroso au niveau de résidus cystéines. Le NO produit par eNOS peut induire la S-nitrosylation de la β−caténine au niveau des jonctions intercellulaires et moduler la perméabilité de l’endothélium. Il a d’ailleurs été montré que le NO peut contrôler l’expression génique par la transcription. Le but de cette thèse est d’établir le rôle du NO au sein de la transcription des cellules endothéliales, spécifiquement au niveau de l’activité de β-caténine. Le premier objectif était de déterminer si la SNO de la β-caténine affecte son activité transcriptionnelle. Nous avons montré que le NO inhibe l’activité transcriptionnelle de β- caténine ainsi que la prolifération des cellules endothéliales induites par l’activation de la voie Wnt/β-caténine. Il est intéressant de constater que le VEGF, qui induit la production de NO via eNOS, réprime l’expression de AXIN2 qui est un gène cible de Wnt s’exprimant suite à la i i stimulation par Wnt3a et ce, dépendamment de eNOS. Nous avons identifié que la cystéine 466 de la β-caténine est un résidu essentiel à la modulation répressive de son activité transcriptionnelle par le NO. Lorsqu’il est nitrosylé, ce résidu est responsable de la perturbation du complexe de transcription formé de β-caténine et TCF-4 ce qui inhibe la prolifération des cellules endothéliales induite par la stimulation par Wnt3a. Puisque le NO affecte la transcription, nous avons réalisé l’analyse du transcriptome afin d’obtenir une vue d’ensemble du rôle du NO dans l’activité transcriptionnelle des cellules endothéliales. L’analyse différentielle de l’expression des gènes de cellules endothéliales montre que la répression de eNOS par siRNA augmente l’expression de gènes impliqués au niveau de la polarisation tels que : PARD3A, PARD3B, PKCZ, CRB1 et TJ3. Cette analyse suggère que le NO peut réguler la polarisation des cellules et a permis d’identifier des gènes responsables de l’intégrité des cellules endothéliales et de la réponse immunitaire. De plus, l’analyse de voies de signalisation par KEGG montre que certains gènes modulés par l’ablation de eNOS sont enrichis dans de nombreuses voies de signalisation, notamment Ras et Notch qui sont importantes lors de la migration cellulaire et la différenciation des cellules de têtes et de tronc (tip/stalk). Le regroupement des gènes exprimés chez les cellules traitées au VEGF (déplétées de eNOS ou non) révèle que le NO peut affecter l’expression de gènes contribuant au processus angiogénique, dont l’attraction chimiotactique. Notre étude montre que le NO module la transcription des cellules endothéliales et régule l’expression des gènes impliqués dans l’angiogenèse et la fonction endothéliale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berlim e a sua paisagem sonora suscitam emoções diversas capazes de desencadear um processo criativo. As palavras que se seguem são a expressão de um projeto que se quis catalisador de um olhar muito pessoal sobre esta cidade. Tendo como base, na criação, a estética da colagem, este projeto materializa-se numa performance final onde uma atriz, uma bailarina e um trombonista dão corpo a diversas emoções. Ainda na criação, é importante salientar o papel das técnicas de síntese na busca de novas sonoridades e o uso de tecnologias da música na composição e edição musical. Está patente, neste projeto, um clin-d’oeil ao serialismo e a corrente espectral francesa. As anotações dramatúrgicas foram também essenciais ao longo da composição musical e da encenação de toda a performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ongoing quest for finding treatment against memory loss seen in aging and in many neurological and neurodegenerative diseases, so far has been unsuccessful and memory enhancers are seen as a potential remedy against this brain dysfunction. Recently, we showed that gene corresponding to a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414) is a robust memory enhancer (Lopez-Aranda et al. 2009: Science). RGS14414-treatment in area V2 of visual cortex caused memory enhancement to such extent that it converted short-term object recognition memory (ORM) of 45min into long lasting long-term memory that could be traced even after many months. Now, through targeting of multiple receptors and molecules known to be involved in memory processing, we found that GluR2 subunit of AMPA receptor might be key to memory enhancement in RGS-animals. RGS14-animals showed a progressive increase in GluR2 protein expression while processing an object information which reached to highest level after 60min of object exposure, a time period required for conversion of short-term ORM into long-term memory in our laboratory set up. Normal rats could retain an object information in brain for 45min (short-term) and not for 60min. However, RGS-treated rats are able to retain the same information for 24h or longer (long-term). Therefore, highest expression of GluR2 subunit seen at 60min suggests that this protein might be key in memory enhancement and conversion to long-term memory in RGS-animals. In addition, we will also discuss the implication of Hebbian plasticity and interaction of brain circuits in memory enhancement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.