996 resultados para Energy splitting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy conversion by living organisms is central dogma of bioenergetics. The effectiveness of the energy extraction by aerobic organisms is much greater than by anaerobic ones. In aerobic organisms the final stage of energy conversion occurs in respiratory chain that is located in the inner membrane of mitochondria or cell membrane of some aerobic bacteria. The terminal complex of the respiratory chain is cytochrome c oxidase (CcO) - the subject of this study. The primary function of CcO is to reduce oxygen to water. For this, CcO accepts electrons from a small soluble enzyme cytochrome c from one side of the membrane and protons from another side. Moreover, CcO translocates protons across the membrane. Both oxygen reduction and proton translocation contributes to generation of transmembrane electrochemical gradient that is used for ATP synthesis and different types of work in the cell. Although the structure of CcO is defined with a relatively high atomic resolution (1.8 Å), its function can hardly be elucidated from the structure. The electron transfer route within CcO and its steps are very well defined. Meanwhile, the proton transfer roots were predicted from the site-specific mutagenesis and later proved by X-ray crystallography, however, the more strong proof of the players of the proton translocation machine is still required. In this work we developed new methods to study CcO function based on FTIR (Fourier Transform Infrared) spectroscopy. Mainly with use of these methods we answered several questions that were controversial for many years: [i] the donor of H+ for dioxygen bond splitting was identified and [ii] the protolytic transitions of Glu-278 one of the key amino acid in proton translocation mechanism was shown for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycosaminoglycans (GAGs) are complex highly charged linear polysaccharides that have a variety of roles in biological processes. We report the first use of molecular dynamics (MD) free energy calculations using the MM/PBSA method to investigate the binding of GAGs to protein molecules, namely the platelet endothelial cell adhesion molecule 1 (PECAM-1) and annexin A2. Calculations of the free energy of the binding of heparin fragments of different sizes reveal the existence of a region of low GAG-binding affinity in domains 5-6 of PECAM-1 and a region of high affinity in domains 2-3, consistent with experimental data and ligand-protein docking studies. A conformational hinge movement between domains 2 and 3 was observed, which allows the binding of heparin fragments of increasing size (pentasaccharides to octasaccharides) with an increasingly higher binding affinity. Similar simulations of the binding of a heparin fragment to annexin A2 reveal the optimization of electrostatic and hydrogen bonding interactions with the protein and protein-bound calcium ions. In general, these free energy calculations reveal that the binding of heparin to protein surfaces is dominated by strong electrostatic interactions for longer fragments, with equally important contributions from van der Waals interactions and vibrational entropy changes, against a large unfavorable desolvation penalty due to the high charge density of these molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-Fos–c-Jun complex forms the activator protein 1 transcription factor, a therapeutic target in the treatment of cancer. Various synthetic peptides have been designed to try to selectively disrupt the interaction between c-Fos and c-Jun at its leucine zipper domain. To evaluate the binding affinity between these synthetic peptides and c-Fos, polarizable and nonpolarizable molecular dynamics (MD) simulations were conducted, and the resulting conformations were analyzed using the molecular mechanics generalized Born surface area (MM/GBSA) method to compute free energies of binding. In contrast to empirical and semiempirical approaches, the estimation of free energies of binding using a combination of MD simulations and the MM/GBSA approach takes into account dynamical properties such as conformational changes, as well as solvation effects and hydrophobic and hydrophilic interactions. The predicted binding affinities of the series of c-Jun-based peptides targeting the c-Fos peptide show good correlation with experimental melting temperatures. This provides the basis for the rational design of peptides based on internal, van der Waals, and electrostatic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational studies have been carried out on hydrogenbonded all-trans cyclic pentapeptide backbone. Application of a combination of grid search and energy minimization on this system has resulted in obtaining 23 minimum energy conformations, which are characterized by unique patterns of hydrogen bonding comprising of β- and γ-turns. A study of the minimum energy conformationsvis-a-vis non-planar deviation of the peptide units reveals that non-planarity is an inherent feature in many cases. A study on conformational clustering of minimum energy conformations shows that the minimum energy conformations fall into 6 distinct conformational families. Preliminary comparison with available X-ray structures of cyclic pentapeptide indicates that only some of the minimum energy conformations have formed crystal structures. The set of minimum energy conformations worked out in the present study can form a consolidated database of prototypes for hydrogen bonded backbone and be useful for modelling cyclic pentapeptides both synthetic and bioactive in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Provision of modern energy services for cooking (with gaseous fuels)and lighting (with electricity) is an essential component of any policy aiming to address health, education or welfare issues; yet it gets little attention from policy-makers. Secure, adequate, low-cost energy of quality and convenience is core to the delivery of these services. The present study analyses the energy consumption pattern of Indian domestic sector and examines the urban-rural divide and income energy linkage. A comprehensive analysis is done to estimate the cost for providing modern energy services to everyone by 2030. A public-private partnership-driven business model, with entrepreneurship at the core, is developed with institutional, financing and pricing mechanisms for diffusion of energy services. This approach, termed as EMPOWERS (entrepreneurship model for provision of wholesome energy-related basic services), if adopted, can facilitate large-scale dissemination of energy-efficient and renewable technologies like small-scale biogas/biofuel plants, and distributed power generation technologies to provide clean, safe, reliable and sustainable energy to rural households and urban poor. It is expected to integrate the processes of market transformation and entrepreneurship development involving government, NGOs, financial institutions and community groups as stakeholders. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is concerned with a study on the energy absorption behavior of polyurethane (PU) foams such as flexible high resilience (HR), flexible viscoelastic (VE) and semi-rigid (SR) foams as a function of the overall foam density. Foam samples were prepared in the form of cubes by mixing appropriate polyol and isocyanate compounds produced by Huntsman International India Pvt. Ltd. in varying proportions leading to a range of densities for each type of foam. The cubical samples were tested under compressive load in a standard UTM. Based on the measured load-displacement behaviors, variations of peak load and energy-absorption attributes with respect to density are plotted for each type of foam and the possible existence of an optimum foam density is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The most common pathway to development of diabetes foot ulcers is repetitive daily activity stress on the plantar surface of the neuropathic foot. Studies suggest an association between different diabetic foot complications and physical activity. However, to the best of the authors knowledge the steps/day and sleep patterns of people with diabetic foot ulcers has yet to be investigated. This observational study aims to investigate the physical activity and sleep patterns of three groups of adults with type 2 diabetes and different foot complications Methods Participants with type 2 diabetes were recruited into three groups: 1. those with no reported foot complications (DNIL), 2. those with diagnosis of neuropathy (DPN) and 3. those with a neuropathic ulcer (DFU). Exclusion criteria included peripheral arterial disease and mobility aid use. Participants wore a SenseWear Pro 3 Armband continuously for 7 days and completed an Epworth Sleepiness Scale. The Armband is a validated automated measure of activity (walking steps, average Metabolic Equivalent Task (MET), physical activity (>3 METs) duration), energy expenditure(kJ) (total and physical activity (>3 METs)) and sleep (duration). Data on age, sex, BMI, diabetes duration and HbA1c were also collected. Results Sixty-Six (14 DNIL, 22 DPN and 30 DFU's participants were recruited; 71% males, mean age 61(±12) years, diabetes duration 13(±9) years, HbA1c 8.3(±2.8), BMI 32.6(±5.9), average METs 1.2(0.2). Significant differences were reported in mean(SD) steps/day (5,859(±2,381) in DNIL; 5,007(±3,349) in DPN and 3,271(±2,417) in DFU's and daily energy expenditure (10,868(±1,307)kJ in DNIL; 11,060(±1,916)kJ in DPN and 13,006(± 3,559) in DFU's(p <0.05). No significant differences were reported for average METs, physical activity duration or energy expenditure, sleep time or Epworth score (p>0.1). Conclusions Preliminary findings suggest people with diabetes are sedentary. Results indicate that patients with a diabetic foot ulcer work significantly less than those with neuropathy or nil complications and use significantly more energy to do so. Sleep Parameters showed no differences. Recruitment is still on going.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10(-7). In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function.