950 resultados para Emission uniformity
Measuring energy spectra of TeV gamma-ray emission from the Cygnus region of our galaxy with Milagro
Resumo:
High energy gamma rays can provide fundamental clues to the origins of cosmic rays. In this thesis, TeV gamma-ray emission from the Cygnus region is studied. Previously the Milagro experiment detected five TeV gamma-ray sources in this region and a significant excess of TeV gamma rays whose origin is still unclear. To better understand the diffuse excess the separation of sources and diffuse emission is studied using the latest and most sensitive data set of the Milagro experiment. In addition, a newly developed technique is applied that allows the energy spectrum of the TeV gamma rays to be reconstructed using Milagro data. No conclusive statement can be made about the spectrum of the diffuse emission from the Cygnus region because of its low significance of 2.2 σ above the background in the studied data sample. The entire Cygnus region emission is best fit with a power law with a spectral index of α=2.40 (68% confidence interval: 1.35-2.92) and a exponential cutoff energy of 31.6 TeV (10.0-251.2 TeV). In the case of a simple power law assumption without a cutoff energy the best fit yields a spectral index of α=2.97 (68% confidence interval: 2.83-3.10). Neither of these best fits are in good agreement with the data. The best spectral fit to the TeV emission from MGRO J2019+37, the brightest source in the Cygnus region, yields a spectral index of α=2.30 (68% confidence interval: 1.40-2.70) with a cutoff energy of 50.1 TeV (68% confidence interval: 17.8-251.2 TeV) and a spectral index of α=2.75 (68% confidence interval: 2.65-2.85) when no exponential cutoff energy is assumed. According to the present analysis, MGRO J2019+37 contributes 25% to the differential flux from the entire Cygnus at 15 TeV.
Resumo:
Ion impact emission cross sections for eleven transitions from the 5p56p configuration to the 5p56s configuration of neutral xenon occurring in the spectral region between 700 nm and 1000 nm have been measured experimentally. Collisions between both singly- and doublyionized xenon and neutral xenon have been studied. These cross sections are of primary use in the development of a spectrographic diagnostic for Hall effect thruster plasma. A detailed discussion of the experimental methods and the subsequent data reduction is included. The results are presented and the importance of these data for spectrographic emission models of Hall effect thruster plasmas is discussed.
Resumo:
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been used to quantify SO2 emissions from passively degassing volcanoes. This dissertation explores ASTER’s capability to detect SO2 with satellite validation, enhancement techniques and extensive processing of images at a variety of volcanoes. ASTER is compared to the Mini UV Spectrometer (MUSe), a ground based instrument, to determine if reasonable SO2 fluxes can be quantified from a plume emitted from Lascar, Chile. The two sensors were in good agreement with ASTER proving to be a reliable detector of SO2. ASTER illustrated the advantages of imaging a plume in 2D, with better temporal resolution than the MUSe. SO2 plumes in ASTER imagery are not always discernible in the raw TIR data. Principal Component Analysis (PCA) and Decorrelation Stretch (DCS) enhancement techniques were compared to determine how well they highlight a variety of volcanic plumes. DCS produced a consistent output and the composition of the plumes was easy to identify from explosive eruptions. As the plumes became smaller and lower in altitude they became harder to distinguish using DCS. PCA proved to be better at identifying smaller low altitude plumes. ASTER was used to investigate SO2 emissions at Lascar, Chile. Activity at Lascar has been characterized by cyclic behavior and persistent degassing (Matthews et al. 1997). Previous studies at Lascar have primarily focused on changes in thermal infrared anomalies, neglecting gas emissions. Using the SO2 data along with changes in thermal anomalies and visual observations it is evident that Lascar is at the end an eruptive cycle that began in 1993. Declining gas emissions and crater temperatures suggest that the conduit is sealing. ASTER and the Ozone Monitoring Instrument (OMI) were used to determine the annual contribution of SO2 to the troposphere from the Central and South American volcanic arcs between 2000 and 2011. Fluxes of 3.4 Tg/a for Central America and 3.7 Tg/a for South America were calculated. The detection limits of ASTER were explored. The results a proved to be interesting, with plumes from many of the high emitting volcanoes, such as Villarrica, Chile, not being detected by ASTER.
Resumo:
The Acoustic emission (AE) technique, as one of non-intrusive and nondestructive evaluation techniques, acquires and analyzes the signals emitting from deformation or fracture of materials/structures under service loading. The AE technique has been successfully applied in damage detection in various materials such as metal, alloy, concrete, polymers and other composite materials. In this study, the AE technique was used for detecting crack behavior within concrete specimens under mechanical and environmental frost loadings. The instrumentations of the AE system used in this study include a low-frequency AE sensor, a computer-based data acquisition device and a preamplifier linking the AE sensor and the data acquisition device. The AE system purchased from Mistras Group was used in this study. The AE technique was applied to detect damage with the following laboratory tests: the pencil lead test, the mechanical three-point single-edge notched beam bending (SEB) test, and the freeze-thaw damage test. Firstly, the pencil lead test was conducted to verify the attenuation phenomenon of AE signals through concrete materials. The value of attenuation was also quantified. Also, the obtained signals indicated that this AE system was properly setup to detect damage in concrete. Secondly, the SEB test with lab-prepared concrete beam was conducted by employing Mechanical Testing System (MTS) and AE system. The cumulative AE events and the measured loading curves, which both used the crack-tip open displacement (CTOD) as the horizontal coordinate, were plotted. It was found that the detected AE events were qualitatively correlated with the global force-displacement behavior of the specimen. The Weibull distribution was vii proposed to quantitatively describe the rupture probability density function. The linear regression analysis was conducted to calibrate the Weibull distribution parameters with detected AE signals and to predict the rupture probability as a function of CTOD for the specimen. Finally, the controlled concrete freeze-thaw cyclic tests were designed and the AE technique was planned to investigate the internal frost damage process of concrete specimens.
Resumo:
PURPOSE: G protein-coupled receptor agonists are being used as radiolabeled vectors for in vivo localization and therapy of tumors. Recently, somatostatin-based antagonists were shown to be superior to agonists. Here, we compare the new [111In/68Ga]-labeled bombesin-based antagonist RM1 with the agonist [111In]-AMBA for targeting the gastrin-releasing peptide receptor (GRPR). EXPERIMENTAL DESIGN: IC50, Kd values, and antagonist potency were determined using PC-3 and HEK-GRPR cells. Biodistribution and imaging studies were done in nude mice transplanted with the PC-3 tumor. The antagonist potency was assessed by evaluating the effects on calcium release and on receptor internalization monitored by immunofluorescence microscopy. RESULTS: The IC50 value of [(nat)In]-RM1 was 14 +/- 3.4 nmol/L. [(nat/111)In]-RM1 was found to bind to the GRPR with a Kd of 8.5 +/- 2.7 nmol/L compared with a Kd of 0.6 +/- 0.3 nmol/L of [111In]-AMBA. A higher maximum number of binding site value was observed for [111In]-RM1 (2.4 +/- 0.2 nmol/L) compared with [111In]-AMBA (0.7 +/- 0.1 nmol/L). [(nat)Lu]-AMBA is a potent agonist in the immunofluorescence-based internalization assay, whereas [(nat)In]-RM1 is inactive alone but efficiently antagonizes the bombesin effect. These data are confirmed by the calcium release assay. The pharmacokinetics showed a superiority of the radioantagonist with regard to the high tumor uptake (13.4 +/- 0.8% IA/g versus 3.69 +/- 0.75% IA/g at 4 hours after injection. as well as to all tumor-to-normal tissue ratios. CONCLUSION: Despite their relatively low GRPR affinity, the antagonists [111In/68Ga]-RM1 showed superior targeting properties compared with [111In]-AMBA. As found for somatostatin receptor-targeting radiopeptides, GRP-based radioantagonists seem to be superior to radioagonists for in vivo imaging and potentially also for targeted radiotherapy of GRPR-positive tumors.
Resumo:
We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .