985 resultados para Embryo proper
Resumo:
Winner of a best paper award.
Resumo:
The six-layered neuron structure in the cerebral cortex is the foundation for human mental abilities. In the developing cerebral cortex, neural stem cells undergo proliferation and differentiate into intermediate progenitors and neurons, a process known as embryonic neurogenesis. Disrupted embryonic neurogenesis is the root cause of a wide range of neurodevelopmental disorders, including microcephaly and intellectual disabilities. Multiple layers of regulatory networks have been identified and extensively studied over the past decades to understand this complex but extremely crucial process of brain development. In recent years, post-transcriptional RNA regulation through RNA binding proteins has emerged as a critical regulatory nexus in embryonic neurogenesis. The exon junction complex (EJC) is a highly conserved RNA binding complex composed of four core proteins, Magoh, Rbm8a, Eif4a3, and Casc3. The EJC plays a major role in regulating RNA splicing, nuclear export, subcellular localization, translation, and nonsense mediated RNA decay. Human genetic studies have associated individual EJC components with various developmental disorders. We showed previously that haploinsufficiency of Magoh causes microcephaly and disrupted neural stem cell differentiation in mouse. However, it is unclear if other EJC core components are also required for embryonic neurogenesis. More importantly, the molecular mechanism through which the EJC regulates embryonic neurogenesis remains largely unknown. Here, we demonstrated with genetically modified mouse models that both Rbm8a and Eif4a3 are required for proper embryonic neurogenesis and the formation of a normal brain. Using transcriptome and proteomic analysis, we showed that the EJC posttranscriptionally regulates genes involved in the p53 pathway, splicing and translation regulation, as well as ribosomal biogenesis. This is the first in vivo evidence suggesting that the etiology of EJC associated neurodevelopmental diseases can be ribosomopathies. We also showed that, different from other EJC core components, depletion of Casc3 only led to mild neurogenesis defects in the mouse model. However, our data suggested that Casc3 is required for embryo viability, development progression, and is potentially a regulator of cardiac development. Together, data presented in this thesis suggests that the EJC is crucial for embryonic neurogenesis and that the EJC and its peripheral factors may regulate development in a tissue-specific manner.
Resumo:
In this comment, we pick up three points raised by Ohndorf et al. (2015) in their reply to our ethical assessment of the German Advisory Council’s Budget Approach (WBGUBA). First, we discuss and clarify the relationship between ethics and political feasibility, highlighting that the way Ohndorf et el. use feasibility creates an unwarranted status quo bias. Second, we explain the proper place historical responsibility should have within the WBGUBA, stressing the fact that the reasons why we choose one policy proposal over another matter. Third, we analyze the limited extent to which a normative heuristic should motivate an ethically ambitious policy proposal like the WBGUBA.
Resumo:
As the concentration of CO2 in surface seawaters increases (ocean acidification, or OA) the saturation of calcium carbonate decreases, preventing marine organisms from creating shells and other calcified structures. These effects of elevated CO2 on calcification have been previously shown in free-spawning larvae, but are not as well-studied in larvae that spend their early life stages in encapsulation. The focus of our study was to determine what effects CO2 would have on a diversity of encapsulated embryos, and whether different types of encapsulating structures provided different levels of protection against OA. We found only a moderate larval response to low (600 ppm), medium (1050 ppm), and high (1500 ppm) CO2 concentrations across all species taken as a whole, but did observe that several species/ populations exhibited a decline in shell length with no corresponding decline in inorganic content. This suggests that while calcification was not significantly decreased by our OA conditions, perhaps the morphology of certain shells changed, becoming wider and shorter. Our hatch times, which increased with elevated CO2, confirmed that increased CO2 placed embryos under stress during development.
Resumo:
info:eu-repo/semantics/published
Resumo:
The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin-or light-induced expression of marker genes, we showed that auxininduced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.
Resumo:
We study proper actions of groups $G \cong \Z/2\Z \ast \Z/2\Z \ast \Z/2\Z$ on affine space of three real dimensions. Since $G$ is nonsolvable, work of Fried and Goldman implies that it preserves a Lorentzian metric. A subgroup $\Gamma < G$ of index two acts freely, and $\R^3/\Gamma$ is a Margulis spacetime associated to a hyperbolic surface $\Sigma$. When $\Sigma$ is convex cocompact, work of Danciger, Gu{\'e}ritaud, and Kassel shows that the action of $\Gamma$ admits a polyhedral fundamental domain bounded by crooked planes. We consider under what circumstances the action of $G$ also admits a crooked fundamental domain. We show that it is possible to construct actions of $G$ that fail to admit crooked fundamental domains exactly when the extended mapping class group of $\Sigma$ fails to act transitively on the top-dimensional simplices of the arc complex of $\Sigma$. We also provide explicit descriptions of the moduli space of $G$ actions that admit crooked fundamental domains.
Resumo:
Proper holding temperatures will ensure that Time/Temperature Control for Safety foods are not in the temperature danger zone (between 45°F and 130°F) while food items are held for further preparation and/or consumption. Hot foods must be maintained at or above 130°F. Cold foods must be maintained at or below 45°F. It also contains a holding temperature log template for use in restaurants.
Resumo:
Proper cooling temperatures will prevent microbial growth by helping limit the time that food is exposed to the temperature danger zone. After cooking or heating, Time/Temperature for Safety (TCS) foods must be cooled quickly: From 130°F to 70°F within 2 hours, and From 70°F to 45°F within 4 hours. This sheet also contains a rapid cooling temperature log template.
Resumo:
SELECTED ORAL COMMUNICATIONS, SESSION 52: EPIGENETIC PATTERN IN OOCYTE AND EMBRYO, Tuesday 16 June 2015. This article/study appears in: Abstract book of the 31st ESHRE Annual Meeting, Lisbon, Portugal, 14-17 June 2015.
Resumo:
Genetic evidence has implicated several genes as being critical for heart development. However, the inducers of these genes as well as their targets and pathways they are involved with, remain largely unknown. Previous studies in the avian embryo showed that at HH4 Cerberus (cCer) transcripts are detected in the anterior endomesoderm including the heart precursor cells and later in the left lateral plate mesoderm. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Whole-mount in situ hybridization and sectioning of selected genes showed heart and vascular expression patterns for these transcripts during early chick development. We have developed an effective strategy to specifically identify genes that are differentially expressed in the HPC lineages. Within this set we have identified several genes that are expressed in the heart, blood and vascular lineages, which are likely to play a role in their development. These genes are potential candidates for future functional studies on early embryonic patterning.
Resumo:
The aims of this study were (i) to measure the direct effects of exogenous human recombinant PON1 (rPON1) on bovine oocyte maturation at the molecular level (gene expression) and (ii) to measure the carry-over effects of PON1 on pre-implantation embryo development in vitro.
Resumo:
This study aimed to evaluate two hormonal protocols for synchronization of follicular wave emergence on in vivo embryo production in Santa Ines sheep under tropical conditions. The greater PRCL rate in GT probably contributed to the smaller number of viable embryos. Thus, it is suggested the appliance indicated the GEm protocol for in vivo embryo production in Santa Ines sheep under tropical conditions.
Resumo:
Oxytocin has been used to promote cervical dilation with the objective to access uterus both in artificial insemination and transcervical embryo recovery in sheep and goats. The objective of this study was to test the effect of two routes of oxytocin administration on nonsurgical embryo recovery efficiency in Santa Inês ewes after induction of synchronous estrus. Results of this study showed that nonsurgical transcervical embryo recovery can be efficiently done in some ewes; a higher number of individuals is needed to conclude that transcervical embryo recovery can be efficiently done in ewes and surgery embryo collections can be avoided in near to 60% of pluriparous Santa Inês ewes; and that the route of oxytocin administration did not affect the parameters evaluated.