906 resultados para EQUATION-ERROR MODELS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on the impact of historical, current and future global change require very high-resolution climate data (less or equal 1km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1°C and 0.5 °C for 98.9% and 87.8% of all pixels for the first two 1 arc degree distance zones. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1km for Europe. As additional variables we calculate 19 'bioclimatic' variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently a new type of cosmological singularity has been postulated for infinite barotropic index w in the equation of state p = wρ of the cosmological fluid, but vanishing pressure and density at the singular event. Apparently the barotropic index w would be the only physical quantity to blow up at the singularity. In this talk we would like to discuss the strength of such singularities and compare them with other types. We show that they are weak singularities

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of matter under conditions of high density, pressure, and temperature is a valuable subject for inertial confinement fusion (ICF), astrophysical phenomena, high-power laser interaction with matter, etc. In all these cases, matter is heated and compressed by strong shocks to high pressures and temperatures, becomes partially or completely ionized via thermal or pressure ionization, and is in the form of dense plasma. The thermodynamics and the hydrodynamics of hot dense plasmas cannot be predicted without the knowledge of the equation of state (EOS) that describes how a material reacts to pressure and how much energy is involved. Therefore, the equation of state often takes the form of pressure and energy as functions of density and temperature. Furthermore, EOS data must be obtained in a timely manner in order to be useful as input in hydrodynamic codes. By this reason, the use of fast, robust and reasonably accurate atomic models, is necessary for computing the EOS of a material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes the use of Factored Translation Models (FTMs) for improving a Speech into Sign Language Translation System. These FTMs allow incorporating syntactic-semantic information during the translation process. This new information permits to reduce significantly the translation error rate. This paper also analyses different alternatives for dealing with the non-relevant words. The speech into sign language translation system has been developed and evaluated in a specific application domain: the renewal of Identity Documents and Driver’s License. The translation system uses a phrase-based translation system (Moses). The evaluation results reveal that the BLEU (BiLingual Evaluation Understudy) has improved from 69.1% to 73.9% and the mSER (multiple references Sign Error Rate) has been reduced from 30.6% to 24.8%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present two approaches to cluster dialogue-based information obtained by the speech understanding module and the dialogue manager of a spoken dialogue system. The purpose is to estimate a language model related to each cluster, and use them to dynamically modify the model of the speech recognizer at each dialogue turn. In the first approach we build the cluster tree using local decisions based on a Maximum Normalized Mutual Information criterion. In the second one we take global decisions, based on the optimization of the global perplexity of the combination of the cluster-related LMs. Our experiments show a relative reduction of the word error rate of 15.17%, which helps to improve the performance of the understanding and the dialogue manager modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new methodology to build parametric models to estimate global solar irradiation adjusted to specific on-site characteristics based on the evaluation of variable im- portance. Thus, those variables higly correlated to solar irradiation on a site are implemented in the model and therefore, different models might be proposed under different climates. This methodology is applied in a study case in La Rioja region (northern Spain). A new model is proposed and evaluated on stability and accuracy against a review of twenty-two already exist- ing parametric models based on temperatures and rainfall in seventeen meteorological stations in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to achieve a high level of confidence in model calibration and validation from short time series (in this case five years, from 2007 to 2011). The model proposed improves the estimates of the other twenty-two models with average mean absolute error (MAE) of 2.195 MJ/m2 day and average confidence interval width (95% C.I., n=100) of 0.261 MJ/m2 day. 41.65% of the daily residuals in the case of SIAR and 20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks (10% and 5%, respectively). Relative differences between measured and estimated irradiation on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful to estimate annual sums of global solar irradiation, reaching insignificant differences between measurements from pyranometers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo aborda el problema de modelizar sistemas din´amicos reales a partir del estudio de sus series temporales, usando una formulaci´on est´andar que pretende ser una abstracci´on universal de los sistemas din´amicos, independientemente de su naturaleza determinista, estoc´astica o h´ıbrida. Se parte de modelizaciones separadas de sistemas deterministas por un lado y estoc´asticos por otro, para converger finalmente en un modelo h´ıbrido que permite estudiar sistemas gen´ericos mixtos, esto es, que presentan una combinaci´on de comportamiento determinista y aleatorio. Este modelo consta de dos componentes, uno determinista consistente en una ecuaci´on en diferencias, obtenida a partir de un estudio de autocorrelaci´on, y otro estoc´astico que modeliza el error cometido por el primero. El componente estoc´astico es un generador universal de distribuciones de probabilidad, basado en un proceso compuesto de variables aleatorias, uniformemente distribuidas en un intervalo variable en el tiempo. Este generador universal es deducido en la tesis a partir de una nueva teor´ıa sobre la oferta y la demanda de un recurso gen´erico. El modelo resultante puede formularse conceptualmente como una entidad con tres elementos fundamentales: un motor generador de din´amica determinista, una fuente interna de ruido generadora de incertidumbre y una exposici´on al entorno que representa las interacciones del sistema real con el mundo exterior. En las aplicaciones estos tres elementos se ajustan en base al hist´orico de las series temporales del sistema din´amico. Una vez ajustados sus componentes, el modelo se comporta de una forma adaptativa tomando como inputs los nuevos valores de las series temporales del sistema y calculando predicciones sobre su comportamiento futuro. Cada predicci´on se presenta como un intervalo dentro del cual cualquier valor es equipro- bable, teniendo probabilidad nula cualquier valor externo al intervalo. De esta forma el modelo computa el comportamiento futuro y su nivel de incertidumbre en base al estado actual del sistema. Se ha aplicado el modelo en esta tesis a sistemas muy diferentes mostrando ser muy flexible para afrontar el estudio de campos de naturaleza dispar. El intercambio de tr´afico telef´onico entre operadores de telefon´ıa, la evoluci´on de mercados financieros y el flujo de informaci´on entre servidores de Internet son estudiados en profundidad en la tesis. Todos estos sistemas son modelizados de forma exitosa con un mismo lenguaje, a pesar de tratarse de sistemas f´ısicos totalmente distintos. El estudio de las redes de telefon´ıa muestra que los patrones de tr´afico telef´onico presentan una fuerte pseudo-periodicidad semanal contaminada con una gran cantidad de ruido, sobre todo en el caso de llamadas internacionales. El estudio de los mercados financieros muestra por su parte que la naturaleza fundamental de ´estos es aleatoria con un rango de comportamiento relativamente acotado. Una parte de la tesis se dedica a explicar algunas de las manifestaciones emp´ıricas m´as importantes en los mercados financieros como son los “fat tails”, “power laws” y “volatility clustering”. Por ´ultimo se demuestra que la comunicaci´on entre servidores de Internet tiene, al igual que los mercados financieros, una componente subyacente totalmente estoc´astica pero de comportamiento bastante “d´ocil”, siendo esta docilidad m´as acusada a medida que aumenta la distancia entre servidores. Dos aspectos son destacables en el modelo, su adaptabilidad y su universalidad. El primero es debido a que, una vez ajustados los par´ametros generales, el modelo se “alimenta” de los valores observables del sistema y es capaz de calcular con ellos comportamientos futuros. A pesar de tener unos par´ametros fijos, la variabilidad en los observables que sirven de input al modelo llevan a una gran riqueza de ouputs posibles. El segundo aspecto se debe a la formulaci´on gen´erica del modelo h´ıbrido y a que sus par´ametros se ajustan en base a manifestaciones externas del sistema en estudio, y no en base a sus caracter´ısticas f´ısicas. Estos factores hacen que el modelo pueda utilizarse en gran variedad de campos. Por ´ultimo, la tesis propone en su parte final otros campos donde se han obtenido ´exitos preliminares muy prometedores como son la modelizaci´on del riesgo financiero, los algoritmos de routing en redes de telecomunicaci´on y el cambio clim´atico. Abstract This work faces the problem of modeling dynamical systems based on the study of its time series, by using a standard language that aims to be an universal abstraction of dynamical systems, irrespective of their deterministic, stochastic or hybrid nature. Deterministic and stochastic models are developed separately to be merged subsequently into a hybrid model, which allows the study of generic systems, that is to say, those having both deterministic and random behavior. This model is a combination of two different components. One of them is deterministic and consisting in an equation in differences derived from an auto-correlation study and the other is stochastic and models the errors made by the deterministic one. The stochastic component is an universal generator of probability distributions based on a process consisting in random variables distributed uniformly within an interval varying in time. This universal generator is derived in the thesis from a new theory of offer and demand for a generic resource. The resulting model can be visualized as an entity with three fundamental elements: an engine generating deterministic dynamics, an internal source of noise generating uncertainty and an exposure to the environment which depicts the interactions between the real system and the external world. In the applications these three elements are adjusted to the history of the time series from the dynamical system. Once its components have been adjusted, the model behaves in an adaptive way by using the new time series values from the system as inputs and calculating predictions about its future behavior. Every prediction is provided as an interval, where any inner value is equally probable while all outer ones have null probability. So, the model computes the future behavior and its level of uncertainty based on the current state of the system. The model is applied to quite different systems in this thesis, showing to be very flexible when facing the study of fields with diverse nature. The exchange of traffic between telephony operators, the evolution of financial markets and the flow of information between servers on the Internet are deeply studied in this thesis. All these systems are successfully modeled by using the same “language”, in spite the fact that they are systems physically radically different. The study of telephony networks shows that the traffic patterns are strongly weekly pseudo-periodic but mixed with a great amount of noise, specially in the case of international calls. It is proved that the underlying nature of financial markets is random with a moderate range of variability. A part of this thesis is devoted to explain some of the most important empirical observations in financial markets, such as “fat tails”, “power laws” and “volatility clustering”. Finally it is proved that the communication between two servers on the Internet has, as in the case of financial markets, an underlaying random dynamics but with a narrow range of variability, being this lack of variability more marked as the distance between servers is increased. Two aspects of the model stand out as being the most important: its adaptability and its universality. The first one is due to the fact that once the general parameters have been adjusted , the model is “fed” on the observable manifestations of the system in order to calculate its future behavior. Despite the fact that the model has fixed parameters the variability in the observable manifestations of the system, which are used as inputs of the model, lead to a great variability in the possible outputs. The second aspect is due to the general “language” used in the formulation of the hybrid model and to the fact that its parameters are adjusted based on external manifestations of the system under study instead of its physical characteristics. These factors made the model suitable to be used in great variety of fields. Lastly, this thesis proposes other fields in which preliminary and promising results have been obtained, such as the modeling of financial risk, the development of routing algorithms for telecommunication networks and the assessment of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.