994 resultados para DYNAMIC OPTICAL NONLINEARITIES
Resumo:
Nestlé’s Dynamic Forecasting Process: Anticipating Risks and Opportunities This Work Project discusses the Nestlé’s Dynamic Forecasting Process, implemented within the organization as a way of reengineering its performance management concept and processes, so as to make it more flexible and capable to react to volatile business conditions. When stressing the importance of demand planning to reallocate resources and enhance performance, Nescafé Dolce Gusto comes as way of seeking improvements on this forecasts’ accuracy and it is thus, by providing a more accurate model on its capsules’ sales, as well as recommending adequate implementations that positively contribute to the referred Planning Process, that value is brought to the Project
Resumo:
In the early nineties, Mark Weiser wrote a series of seminal papers that introduced the concept of Ubiquitous Computing. According to Weiser, computers require too much attention from the user, drawing his focus from the tasks at hand. Instead of being the centre of attention, computers should be so natural that they would vanish into the human environment. Computers become not only truly pervasive but also effectively invisible and unobtrusive to the user. This requires not only for smaller, cheaper and low power consumption computers, but also for equally convenient display solutions that can be harmoniously integrated into our surroundings. With the advent of Printed Electronics, new ways to link the physical and the digital worlds became available. By combining common printing techniques such as inkjet printing with electro-optical functional inks, it is starting to be possible not only to mass-produce extremely thin, flexible and cost effective electronic circuits but also to introduce electronic functionalities into products where it was previously unavailable. Indeed, Printed Electronics is enabling the creation of novel sensing and display elements for interactive devices, free of form factor. At the same time, the rise in the availability and affordability of digital fabrication technologies, namely of 3D printers, to the average consumer is fostering a new industrial (digital) revolution and the democratisation of innovation. Nowadays, end-users are already able to custom design and manufacture on demand their own physical products, according to their own needs. In the future, they will be able to fabricate interactive digital devices with user-specific form and functionality from the comfort of their homes. This thesis explores how task-specific, low computation, interactive devices capable of presenting dynamic visual information can be created using Printed Electronics technologies, whilst following an approach based on the ideals behind Personal Fabrication. Focus is given on the use of printed electrochromic displays as a medium for delivering dynamic digital information. According to the architecture of the displays, several approaches are highlighted and categorised. Furthermore, a pictorial computation model based on extended cellular automata principles is used to programme dynamic simulation models into matrix-based electrochromic displays. Envisaged applications include the modelling of physical, chemical, biological, and environmental phenomena.
Resumo:
The amorphous silicon photo-sensor studied in this thesis, is a double pin structure (p(a-SiC:H)-i’(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts deposited over transparent glass thus with the possibility of illumination on both sides, responding to wave-lengths from the ultra-violet, visible to the near infrared range. The frontal il-lumination surface, glass side, is used for light signal inputs. Both surfaces are used for optical bias, which changes the dynamic characteristics of the photo-sensor resulting in different outputs for the same input. Experimental studies were made with the photo-sensor to evaluate its applicability in multiplexing and demultiplexing several data communication channels. The digital light sig-nal was defined to implement simple logical operations like the NOT, AND, OR, and complex like the XOR, MAJ, full-adder and memory effect. A pro-grammable pattern emission system was built and also those for the validation and recovery of the obtained signals. This photo-sensor has applications in op-tical communications with several wavelengths, as a wavelength detector and to execute directly logical operations over digital light input signals.
Resumo:
The growing need to patrol and survey large maritime and terrestrial areas increased the need to integrate external sensors on aircraft in order to accomplish those patrols at increasingly higher altitudes, longer range and not depending upon vehicle type. The main focus of this work is to elaborate a practical, simple, effective and efficient methodology for the aircraft modification procedure resulting from the integration of an Elec-tro-Optical/Infra-Red (EO/IR) turret through a support structure. The importance of the devel-opment of a good methodology relies on the correct management of project variables as time, available resources and project complexity. The key is to deliver a proper tool for a project de-sign team that will be used to create a solution that fulfils all technical, non-technical and certi-fication requirements present in this field of transportation. The created methodology is inde-pendent of two main inputs: sensor model and aircraft model definition, and therefore it is in-tended to deliver the results for different projects besides the one that was presented in this work as a case study. This particular case study presents the development of a structure support for FLIR STAR SAPHIRE III turret integration on the front lower fuselage bulkhead (radome) of the LOCKHEED MARTIN C-130 H. Development of the case study focuses on the study of local structural analysis through the use of Finite Element Method (FEM). Development of this Dissertation resulted in a cooperation between Faculty of Science and Technology - Universidade Nova de Lisboa and the company OGMA - Indústria Aeronáutica de Portugal
Resumo:
PURPOSE: To determine the causes of low vision in an elderly population attended by a university visual rehabilitation service and to check for the use of prescribed optical aids. METHOD: A cross-sectional study was carried out on patients aged 60 years or over attending for the first time a university low vision service in 2001. Ophthalmic reevaluation and interview were performed by means of a structured questionnaire in 2002. RESULTS: The sample comprised 50 subjects aged between 60 and 90 years. Severe low vision (<20/200) was present in 68.0% of patients. The main cause of low vision was age-related macular degeneration (44.0%). Regarding literacy, 16.0% were illiterate and 72.0% had completed fundamental schooling. Thirty-one patients (62.0%) had been prescribed optical aids; 54.8% of these patients stated that they use them. A majority (70.6%) held a favorable opinion of these aids. CONCLUSIONS: The main cause of low vision was age-related macular degeneration. Approximately half of those receiving prescriptions reported actually using the aids in their daily activities. Making best use of residual vision in the elderly population with visual impairment is a priority, given the social context, if the independence necessary for enhanced quality of life is to be achieved.
Resumo:
Electric Vehicles (EVs) have limited energy storage capacity and the maximum autonomy range is strongly dependent of the driver's behaviour. Due to the fact of that batteries cannot be recharged quickly during a journey, it is essential that a precise range prediction is available to the driver of the EV. With this information, it is possible to check if the desirable destination is achievable without a stop to charge the batteries, or even, if to reach the destination it is necessary to perform an optimized driving (e.g., cutting the air-conditioning, among others EV parameters). The outcome of this research work is the development of an Electric Vehicle Assistant (EVA). This is an application for mobile devices that will help users to take efficient decisions about route planning, charging management and energy efficiency. Therefore, it will contribute to foster EVs adoption as a new paradigm in the transportation sector.
Resumo:
The development of organic materials displaying high two-photon absorption (TPA) has attracted much attention in recent years due to a variety of potential applications in photonics and optoelectronics, such as three-dimensional optical data storage, fluorescence imaging, two-photon microscopy, optical limiting, microfabrication, photodynamic therapy, upconverted lasing, etc. The most frequently employed structural motifs for TPA materials are donor–pi bridge–acceptor (D–pi–A) dipoles, donor–pi bridge–donor (D–pi–D) and acceptor–pi bridge-acceptor (A–pi–A) quadrupoles, octupoles, etc. In this work we present the synthesis and photophysical characterization of quadrupolar heterocyclic systems with potential applications in materials and biological sciences as TPA chromophores. Indole is a versatile building block for the synthesis of heterocyclic systems for several optoelectronic applications (chemosensors, nonlinear optical, OLEDs) due to its photophysical properties and donor electron ability and 4H-pyran-4-ylidene fragment is frequently used for the synthesis of red light-emitting materials. On the other hand, 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile (1) and 1,3-diethyl-dihydro-5-(2,6-dimethyl-4H-pyran-4-ylidene)-2-thiobarbituric (2) units are usually used as strong acceptor moieties for the preparation of π-conjugated systems of the push-pull type. These building blocks were prepared by Knoevenagel condensation of the corresponding ketone precursor with malononitrile or 1,3-diethyl-dihydro-2-thiobarbituric acid. The new quadrupolar 4H-pyran-4-ylidene fluorophores (3) derived from indole were prepared through condensation of 5-methyl-1H-indole-3-carbaldehyde with the acceptor precursors 1 and 2, in the presence of a catalytical amount of piperidine. The new compounds were characterized by the usual spectroscopic techniques (UV-vis., FT-IR and multinuclear NMR - 1H, 13C).
Resumo:
The Our Lady of Conception church is located in village of Monforte (Portugal) and is not in use nowadays. The church presents structural damage and, consequently, a study was carried out. The study involved the survey of the damage, dynamic identification tests under ambient vibration and the numerical analysis. The church is constituted by the central nave, the chancel, the sacristy and the corridor to access the pulpit. The masonry walls present different thickness, namely 0.65 m in the chancel, 0.70 m in the sacristy, 0.92 in the central nave and 0.65 m in the corridor. The masonry walls present 8 buttresses with different dimensions. The total longitudinal and transversal dimensions of the church are equal to 21.10 m and 14.26 m, respectively. The survey of the damage showed that, in general, the masonry walls are in good conditions, with exception of the transversal walls of the nave, which present severe cracks. The arches of the vault presents also severe cracks along the central nave. As consequence, the infiltrations have increased the degradation of the vault and paintings. Furthermore, the foundations present settlements in the Southwest direction. The dynamic identification test were carried out under the action of ambient excitation of the wind and using 12 piezoelectric accelerometers of high sensitivity. The dynamic identification tests allowed to estimate the dynamic properties of the church, namely frequencies, mode shapes and damping ratios. A FEM numerical model was prepared and calibrated, based on the first four experimental modes estimated in the dynamic identification tests. The average error between the experimental and numerical frequencies of the first four modes is equal to 5%. After calibration of the numerical model, pushover analyses with a load pattern proportional to the mass, in the transversal and longitudinal direction of the church, were performed. The results of the analysis numerical allow to conclude that the most vulnerable direction of the church is in the transversal one and the maximum load factor is equal to 0.35.
Resumo:
As increasingly more sophisticated materials and products are being developed and times-to-market need to be minimized, it is important to make available fast response characterization tools using small amounts of sample, capable of conveying data on the relationships between rheological response, process-induced material structure and product characteristics. For this purpose, a single / twin-screw mini-extrusion system of modular construction, with well-controlled outputs in the range 30-300 g/h, was coupled to a in- house developed rheo-optical slit die able to measure shear viscosity and normal-stress differences, as well as performing rheo-optical experiments, namely small angle light scattering (SALS) and polarized optical microscopy (POM). In addition, the mini-extruder is equipped with ports that allow sample collection, and the extrudate can be further processed into products to be tested later. Here, we present the concept and experimental set-up [1, 2]. As a typical application, we report on the characterization of the processing of a polymer blend and of the properties of extruded sheets. The morphological evolution of a PS/PMMA industrial blend along the extruder, the flow-induced structures developed and the corresponding rheological characteristics are presented, together with the mechanical and structural characteristics of produced sheets. The application of this experimental tool to other material systems will also be discussed.
Resumo:
Forming suitable learning groups is one of the factors that determine the efficiency of collaborative learning activities. However, only a few studies were carried out to address this problem in the mobile learning environments. In this paper, we propose a new approach for an automatic, customized, and dynamic group formation in Mobile Computer Supported Collaborative Learning (MCSCL) contexts. The proposed solution is based on the combination of three types of grouping criteria: learner’s personal characteristics, learner’s behaviours, and context information. The instructors can freely select the type, the number, and the weight of grouping criteria, together with other settings such as the number, the size, and the type of learning groups (homogeneous or heterogeneous). Apart from a grouping mechanism, the proposed approach represents a flexible tool to control each learner, and to manage the learning processes from the beginning to the end of collaborative learning activities. In order to evaluate the quality of the implemented group formation algorithm, we compare its Average Intra-cluster Distance (AID) with the one of a random group formation method. The results show a higher effectiveness of the proposed algorithm in forming homogenous and heterogeneous groups compared to the random method.
Resumo:
In this study, a high-performance composite was prepared from jute fabrics and polypropylene (PP). In order to improve the compatibility of the polar fibers and the non-polar matrix, alkyl gallates with different hydrophobic groups were enzymatically grafted onto jute fabric by laccase to increase the surface hydrophobicity of the fiber. The grafting products were characterized by FTIR. The results of contact angle and wetting time showed that the hydrophobicity of the jute fabrics was improved after the surface modification. The effect of the enzymatic graft modification on the properties of the jute/PP composites was evaluated. Results showed that after the modification, tensile and dynamic mechanical properties of composites improved, and water absorption and thickness swelling clearly decreased. However, tensile properties drastically decreased after a long period of water immersion. The thermal behavior of the composites was evaluated by TGA/DTG. The fiber-matrix morphology in the modified jute/PP composites was confirmed by SEM analysis of the tensile fractured specimens.
Resumo:
Zn1−xCoxO films with different Co concentrations (with x=0.00, 0.10, 0.15, and 0.30) were grown by pulsed laser deposition (PLD) technique. The structural and optical properties of the films were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and photoluminescence (PL). The magnetic properties were measured by conventional magnetometry using a SQUID and simulated by ab-initio calculations using Korring–Khon–Rostoker (KKR) method combined with coherent potential approximation (CPA). The effect of Co-doping on the GIXRD and Raman peaks positions, shape and intensity is discussed. PL studies demonstrate that Co-doping induces a decrease of the bandgap energy and quenching of the UV emission. They also suggest the presence of Zn interstitials when x≥0.15. The 10% Co-doped ZnO film shows ferromagnetism at 390 K with a spontaneous magnetic moment ≈4×10−5 emu and coercive field ≈0.17 kOe. The origin of ferromagnetism is explained based on the calculations using KKR method.
Resumo:
This work reports on the influence of the substrate polarization of electroactive β-PVDF on human adipose stem cells (hASCs) differentiation under static and dynamic conditions. hASCs were cultured on different β-PVDF surfaces (non-poled and “poled -”) adsorbed with fibronectin and osteogenic differentiation was determined using a quantitative alkaline phosphatase assay. “Poled -” β-PVDF samples promote higher osteogenic differentiation, which is even higher under dynamic conditions. It is thus demonstrated that electroactive membranes can provide the necessary electromechanical stimuli for the differentiation of specific cells and therefore will support the design of suitable tissue engineering strategies, such as bone tissue engineering.
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
We investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate under the influence of an external magnetic field or strain induced pseudo-magnetic field. We demonstrate that the application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression as large as 99$\%$ in the Purcell factor is achieved even for moderate magnetic fields. The emitter's lifetime is a discontinuous function of $|{\bf B}|$, which is a direct consequence of the occurrence of discrete Landau levels in graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the quantum level.