788 resultados para Construction industry Management Computer programs
Resumo:
Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.
Resumo:
Construction is undoubtedly the most dangerous industry in Hong Kong, being responsible for 76 percent of all fatal accidents in industry in the region – around twenty times more than any other industry. In this paper, it is argued that while this rate can be largely reduced by improved production practices in isolation from the project’s physical design, there is some scope for the design team to contribute to site safety. A new safety assessment method, the Virtual Safety Assessment System (VSAS), is described which offers assistance. This involves individual construction workers being presented with 3D virtual risky scenarios of their project and a range of possible actions for selection. The method provides an analysis of results, including an assessment of the correctness or otherwise of the user’s selections, contributing to an iterative process of retraining and testing until a satisfactory level of knowledge and skill is achieved.
Resumo:
Growth in productivity is the key determinant of the long-term health and prosperity of an economy. The construction industry being one of major strategic importance, its productivity performance has a significant effect on national economic growth. The relationship between construction output and economy has received intensive studies, but there is lack of empirical study on the relationship between construction productivity and economic fluctuations. Fluctuations in construction output are endemic in the industry. In part they are caused by the boom and slump of the economy as a whole and in part by the nature of the construction product. This research aims to uncover how the productivity of construction sector is influenced in the course of economic fluctuations in Malaysia. Malaysia has adopted three economic policies – New Economic Policy (1971-1990), National Development Policy (1991-2000) and the National Vision Policy (2001-2010) since gaining independence in 1959. The Privatisation Master Plan was introduced in 1991. Operating within this historical context, the Malaysian construction sector has experienced four business cycles since 1960. A mixed-method design approach is adopted in this study. Quantitative analysis was conducted on the published official statistics of the construction industry and the overall economy in Malaysia between 1970 and 2009. Qualitative study involved interviews with a purposive sample of 21 industrial participants. This study identified a 32-year long building cycle appears in 1975-2006. It is superimposed with three shorter construction business cycles in 1975-1987, 1987-1999 and 1999-2006. The correlations of Construction labour productivity (CLP) and GDP per capita are statistically significant for the 1975-2006 building cycle, 1987-1999 and 1999-2006 construction business cycles. It was not significant in 1975-1987 construction business cycles. The Construction Industry Surveys/Census over the period from 1996 to 2007 show that the average growth rate of total output per employee expanded but the added value per employee contracted which imply high cost of bought-in materials and services and inefficient usage of purchases. The construction labour productivity is peaked at 2004 although there is contraction of construction sector in 2004. The residential subsector performed relatively better than the other sub-sectors in most of the productivity indicators. Improvements are found in output per employee, value added per employee, labour competitiveness and capital investment but declines are recorded in value added content and capital productivity. The civil engineering construction is most productive in the labour productivity nevertheless relatively poorer in the capital productivity. The labour cost is more competitive in the larger size establishment. The added value per labour cost is higher in larger sized establishment attributed to efficient in utilization of capital. The interview with the industrial participant reveals that the productivity of the construction sector is influenced by the economic environment, the construction methods, contract arrangement, payment chain and regulatory policies. The fluctuations of construction demand have caused companies switched to defensive strategy during the economic downturn and to ensure short-term survival than to make a profit for the long-term survival and growth. It leads the company to take drastic measures to curb expenses, downsizing, employ contract employment, diversification and venture overseas market. There is no empirical evidence supports downsizing as a necessary step in a process of reviving productivity. The productivity does not correlate with size of firm. A relatively smaller and focused firm is more productive than the larger and diversified organisation. However diversified company experienced less fluctuation in both labour and capital productivity. In order to improve the productivity of the construction sector, it is necessary to remove the negatives and flaws from past practices. The recommended measures include long-term strategic planning and coordinated approaches of government agencies in planning of infrastructure development and to provide regulatory environments which encourage competition and facilitate productivity improvement.
Resumo:
Product innovation is an important contributor to the performance of infrastructure projects in the construction industry. Maximizing the potential for innovative product adoption is a challenging task due to the complexities of the construction innovation system. A qualitative methodology involving interviews with major construction project stakeholders is employed to address the research question: ‘What are the main obstacles to the adoption of innovative products in the road industry?’ The characteristics of six key product innovation obstacles in Australian road projects are described. The six key obstacles are: project goal misalignment, client pressures, weak contractual relations, lack of product trialling, inflexible product specifications and product liability concerns. A snapshot of the dynamics underlying these obstacles is provided. There are few such assessments in the literature, despite the imperative to improve construction innovation rates globally in order to deliver road infrastructure projects of increasing size and complexity. Key obstacles are interpreted through an open innovation construct, providing direction for policy to enhance the uptake of innovation across the construction product supply network. Early evidence suggests the usefulness of an open innovation construct that integrates three conceptual lenses: network governance, absorptive capacity and knowledge intermediation, in order to interpret product adoption obstacles in the context of Australian road infrastructure projects. The paper also provides practical advice and direction for government and industry organizations that wish to promote the flow of innovative product knowledge across the construction supply network.
Resumo:
Hong Kong in summer (June - October) is hot and humid. Construction workers have to undertake physically demanding activities and often in confined spaces. They are vulnerable to heat stress in summer hence health and safety measures associated to heat stress measured by scientific and clinical parameters are urgently needed. This paper provides an initial report of a research project funded by the Research Grants Council (RGC) of the HKSAR. The aim of this study is to develop a set of indices measured by clinical and scientific methods to detect impending attacks of heat stress. These indices would be of tremendous value in better safeguarding workers’ health and safety by reducing the occurrences of heat stress on site. This paper firstly reports on the statistics of construction incidents arising from heat stress. Qualitative and quantitative research methods applied in conducting the research are discussed. It is believed that the construction industry and the government would benefit a lot as a result of this study.
Resumo:
Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.
Resumo:
The goal of this research project is to develop specific BIM objects for temporary construction activities which are fully integrated with object design, construction efficiency and safety parameters. Specifically, the project will deliver modularised electronic scaffolding and formwork objects that will allow designers to easily incorporate them into BIM models to facilitate smarter and safer infrastructure and building construction. This research first identified there is currently a distinct lack of BIM objects for temporary construction works resulting in productivity loss during design and construction, and opportunities for improved consideration of safety standards and practices with the design of scaffolding and formwork. This is particularly relevant in Australia, given the “harmonisation” of OHS legislation across all states and territories from 1 January 2012, meaning that enhancements to Queensland practices will have direct application across Australia. Thus, in conjunction with government and industry partners in Queensland, Australia, the research team developed a strategic three-phase research methodology: (1) the preliminary review phase on industrial scaffolding and formwork practices and BIM implementation; (2) the BIM object development phase with specific safety and productivity functions; and (3) the Queensland-wide workshop phase for product dissemination and training. This paper discusses background review findings, details of the developed methodology, and expected research outcomes and their contributions to the Australian construction industry.
Resumo:
According to Tan et al. (2011), the establishment of a clear sustainability policy in the construction industry is paramount, if only as a statement of the commitment of the top management to protecting the environment and enhancing social responsibility. The resulting policies should then translate into proactive strategies and action plans that improve the sustainability performance of contractors and provide a competitive advantage by integrating “long-run profitability” with sustainable development efforts. The strategies should also take into account climatic protection issues through greenhouse gas emissions (GHGe) monitoring and reduction initiatives (Stocker & Luptacik, 2009)...
Resumo:
Over the last few decades, construction project performance has been evaluated due to the increase of delays, cost overruns and quality failures. Growing numbers of disputes, inharmonious working environments, conflict, blame cultures, and mismatches of objectives among project teams have been found to be contributory factors to poor project performance. Performance measurement (PM) approaches have been developed to overcome these issues, however, the comprehensiveness of PM as an overall approach is still criticised in terms of the iron triangle; namely time, cost, and quality. PM has primarily focused on objective measures, however, continuous improvement requires the inclusion of subjective measures, particularly contractor satisfaction (Co-S). It is challenging to deal with the two different groups of large and small-medium contractor satisfaction as to date, Co-S has not been extensively defined, primarily in developing countries such as Malaysia. Therefore, a Co-S model is developed in this research which aims to fulfil the current needs in the construction industry by integrating performance measures to address large and small-medium contractor perceptions. The positivist paradigm used in the research was adhered to by reviewing relevant literature and evaluating expert discussions on the research topic. It yielded a basis for the contractor satisfaction model (CoSMo) development which consists of three elements: contractor satisfaction (Co-S) dimensions; contributory factors and characteristics (project and participant). Using valid questionnaire results from 136 contractors in Malaysia lead to the prediction of several key factors of contractor satisfaction and to an examination of the relationships between elements. The relationships were examined through a series of sequential statistical analyses, namely correlation, one-way analysis of variance (ANOVA), t-tests and multiple regression analysis (MRA). Forward and backward MRAs were used to develop Co-S mathematical models. Sixteen Co-S models were developed for both large and small-medium contractors. These determined that the large contractor Malaysian Co-S was most affected by the conciseness of project scope and quality of the project brief. Contrastingly, Co-S for small-medium contractors was strongly affected by the efficiency of risk control in a project. The results of the research provide empirical evidence in support of the notion that appropriate communication systems in projects negatively contributes to large Co-S with respect to cost and profitability. The uniqueness of several Co-S predictors was also identified through a series of analyses on small-medium contractors. These contractors appear to be less satisfied than large contractors when participants lack effectiveness in timely authoritative decision-making and communication between project team members. Interestingly, the empirical results show that effective project health and safety measures are influencing factors in satisfying both large and small-medium contractors. The perspectives of large and small-medium contractors in respect to the performance of the entire project development were derived from the Co-S models. These were statistically validated and refined before a new Co-S model was developed. Developing such a unique model has the potential to increase project value and benefit all project participants. It is important to improve participant collaboration as it leads to better project performance. This study may encourage key project participants; such as client, consultant, subcontractor and supplier; to increase their attention to contractor needs in the development of a project. Recommendations for future research include investigating other participants‟ perspectives on CoSMo and the impact of the implementation of CoSMo in a project, since this study is focused purely on the contractor perspective.