922 resultados para Compositional data analysis-roots in geosciences
Resumo:
The object of this report is to present the data and conclusions drawn from the analysis of the origin and destination information. Comments on the advisability and correctness of the approach used by Iowa are encouraged.
Resumo:
Magnetically-induced forces on the inertial masses on-board LISA Path finder are expected to be one of the dominant contributions to the mission noise budget, accounting for up to 40%. The origin of this disturbance is the coupling of the residual magnetization and susceptibility of the test masses with the environmental magnetic field. In order to fully understand this important part of the noise model, a set of coils and magnetometers are integrated as a part of the diagnostics subsystem. During operations a sequence of magnetic excitations will be applied to precisely determine the coupling of the magnetic environment to the test mass displacement using the on-board magnetometers. Since no direct measurement of the magnetic field in the test mass position will be available, an extrapolation of the magnetic measurements to the test mass position will be carried out as a part of the data analysis activities. In this paper we show the first results on the magnetic experiments during an end-to-end LISA Path finder simulation, and we describe the methods under development to map the magnetic field on-board.
Resumo:
One challenge on data assimilation (DA) methods is how the error covariance for the model state is computed. Ensemble methods have been proposed for producing error covariance estimates, as error is propagated in time using the non-linear model. Variational methods, on the other hand, use the concepts of control theory, whereby the state estimate is optimized from both the background and the measurements. Numerical optimization schemes are applied which solve the problem of memory storage and huge matrix inversion needed by classical Kalman filter methods. Variational Ensemble Kalman filter (VEnKF), as a method inspired the Variational Kalman Filter (VKF), enjoys the benefits from both ensemble methods and variational methods. It avoids filter inbreeding problems which emerge when the ensemble spread underestimates the true error covariance. In VEnKF this is tackled by resampling the ensemble every time measurements are available. One advantage of VEnKF over VKF is that it needs neither tangent linear code nor adjoint code. In this thesis, VEnKF has been applied to a two-dimensional shallow water model simulating a dam-break experiment. The model is a public code with water height measurements recorded in seven stations along the 21:2 m long 1:4 m wide flume’s mid-line. Because the data were too sparse to assimilate the 30 171 model state vector, we chose to interpolate the data both in time and in space. The results of the assimilation were compared with that of a pure simulation. We have found that the results revealed by the VEnKF were more realistic, without numerical artifacts present in the pure simulation. Creating a wrapper code for a model and DA scheme might be challenging, especially when the two were designed independently or are poorly documented. In this thesis we have presented a non-intrusive approach of coupling the model and a DA scheme. An external program is used to send and receive information between the model and DA procedure using files. The advantage of this method is that the model code changes needed are minimal, only a few lines which facilitate input and output. Apart from being simple to coupling, the approach can be employed even if the two were written in different programming languages, because the communication is not through code. The non-intrusive approach is made to accommodate parallel computing by just telling the control program to wait until all the processes have ended before the DA procedure is invoked. It is worth mentioning the overhead increase caused by the approach, as at every assimilation cycle both the model and the DA procedure have to be initialized. Nonetheless, the method can be an ideal approach for a benchmark platform in testing DA methods. The non-intrusive VEnKF has been applied to a multi-purpose hydrodynamic model COHERENS to assimilate Total Suspended Matter (TSM) in lake Säkylän Pyhäjärvi. The lake has an area of 154 km2 with an average depth of 5:4 m. Turbidity and chlorophyll-a concentrations from MERIS satellite images for 7 days between May 16 and July 6 2009 were available. The effect of the organic matter has been computationally eliminated to obtain TSM data. Because of computational demands from both COHERENS and VEnKF, we have chosen to use 1 km grid resolution. The results of the VEnKF have been compared with the measurements recorded at an automatic station located at the North-Western part of the lake. However, due to TSM data sparsity in both time and space, it could not be well matched. The use of multiple automatic stations with real time data is important to elude the time sparsity problem. With DA, this will help in better understanding the environmental hazard variables for instance. We have found that using a very high ensemble size does not necessarily improve the results, because there is a limit whereby additional ensemble members add very little to the performance. Successful implementation of the non-intrusive VEnKF and the ensemble size limit for performance leads to an emerging area of Reduced Order Modeling (ROM). To save computational resources, running full-blown model in ROM is avoided. When the ROM is applied with the non-intrusive DA approach, it might result in a cheaper algorithm that will relax computation challenges existing in the field of modelling and DA.
Resumo:
Part 15: Performance Management Frameworks
Resumo:
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated DOC and CPF aftertreatment system. The effects of SME biodiesel blends were investigated in this study in order to determine the PM oxidation kinetics associated with active regeneration, and to determine the effect of biodiesel on them. The experimental data from this study will also be used to calibrate the MTU-1D CPF model. Accurately predicting the PM mass retained in the CPF and the oxidation characteristics will provide the basis for computation in the ECU that will minimize the fuel penalty associated with active regeneration. An active regeneration test procedure was developed based on previous experimentation at MTU. During each experiment, the PM mass in the CPF is determined by weighing the filter at various phases. In addition, DOC and CPF pressure drop, particle size distribution, gaseous emissions, temperature, and PM concentration data are collected and recorded throughout each experiment. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also used. The PM oxidation characteristics at different test conditions were studied in order to determine the effects of biodiesel on PM oxidation during active regeneration. A PM reaction rate calculation method was developed to determine the global activation energy and the corresponding pre-exponential factor for all test fuels. The changing sum of the total flow resistance of the wall, cake, and channels was also determined as part of the data analysis process in order to check on the integrity of the data and to correct input data to be consistent with the expected trends of the resistance based on the engine conditions used in the test procedure. It was determined that increasing the percent biodiesel content in the test fuel tends to increase the PM reaction rate and the regeneration efficiency of fuel dosing, i.e., at a constant CPF inlet temperature, B20 test fuel resulted in the highest PM reaction rate and regeneration efficiency of fuel dosing. Increasing the CPF inlet temperature also increases PM reaction rate and regeneration efficiency of fuel dosing. Performing active regeneration with B20 as opposed to ULSD allows for a lower CPF temperature to be used to reach the same level of regeneration efficiency, or it allows for a shorter regeneration time at a constant CPF temperature, resulting in decreased fuel consumption for the engine during active regeneration in either scenario.
Resumo:
Purpose: To evaluate psychometric properties of Quinn’s leadership questionnaire (CFV questionnaire; 1988) to the Portuguese health services. Design: Cross-sectional study, using the Quinn’s leadership questionnaire, administered to registered nurses and physicians in Portuguese health care services (N = 687). Method: Self-administered survey applied to two samples. In the first (of convenience; N = 249 Portuguese health professionals) were performed exploratory factor and reliability analysis to the CFV questionnaire. In the second sample (stratified; N = 50 surgical units of 33 Portuguese hospitals) was performed confirmatory factor analysis using LISREL 8.80. Findings: The first sample supported an eight-factor solution accounting for 65.46% of the variance, in an interpretable factorial structure (loadings> .50), with Cronbach’s α upper than .79. This factorial structure, replicated with the second sample, showed reasonable fit for each of the 8 leadership roles, quadrants, and global model. The models evidenced, generally, nomological validity, with scores between good and acceptable (.235 < x2/df < 2.055 e .00 < RMSEA < .077). Conclusions: Quinn’s leadership questionnaire presented good reliability and validity for the eight leadership roles, showing to be suitable for use in hospital health care context. Key-Words: Leadership; Quinn’s CVF questionnaire; health services; Quinn’s competing values.
Resumo:
The purpose of this research study is to discuss privacy and data protection-related regulatory and compliance challenges posed by digital transformation in healthcare in the wake of the COVID-19 pandemic. The public health crisis accelerated the development of patient-centred remote/hybrid healthcare delivery models that make increased use of telehealth services and related digital solutions. The large-scale uptake of IoT-enabled medical devices and wellness applications, and the offering of healthcare services via healthcare platforms (online doctor marketplaces) have catalysed these developments. However, the use of new enabling technologies (IoT, AI) and the platformisation of healthcare pose complex challenges to the protection of patient’s privacy and personal data. This happens at a time when the EU is drawing up a new regulatory landscape for the use of data and digital technologies. Against this background, the study presents an interdisciplinary (normative and technology-oriented) critical assessment on how the new regulatory framework may affect privacy and data protection requirements regarding the deployment and use of Internet of Health Things (hardware) devices and interconnected software (AI systems). The study also assesses key privacy and data protection challenges that affect healthcare platforms (online doctor marketplaces) in their offering of video API-enabled teleconsultation services and their (anticipated) integration into the European Health Data Space. The overall conclusion of the study is that regulatory deficiencies may create integrity risks for the protection of privacy and personal data in telehealth due to uncertainties about the proper interplay, legal effects and effectiveness of (existing and proposed) EU legislation. The proliferation of normative measures may increase compliance costs, hinder innovation and ultimately, deprive European patients from state-of-the-art digital health technologies, which is paradoxically, the opposite of what the EU plans to achieve.
Resumo:
Electrochemical hydrogen loading is a technique used to produce and study the hydrogenation in metals starting from a liquid solution containing water. It is a possible alternative to another, well-established technique which loads hydrogen starting from its gas phase. In this work, the electrochemical method is used to understand the fundamental thermodynamics of hydrogen loading in constraint systems such as thin films on substrates, and possibly distinguish the role of interfaces, stresses and microstructure during the hydrogenation process. The systems under study are thin films of Pd, Mg/Pd, and Ti/Mg multilayers. Possible future technological applications may be in the field of hydrogen storage and hydrogen sensors. Towards the end, the experimental setup is modified by introducing an automatic relay. This change leads to improvements in the data analysis and in the attainable information on the kinetics of the systems.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
In view of anticancer activity of 7 β-acetoxywithanolide D (2) and 7β-16α-diacetoxywithonide D (3), isolated from the leaves of Acnistus arborescens (Solanaceae), five withanolide derivatives were obtained and their structures were determined by NMR, MS and IV data analysis. The in vitro anticancer activity of these derivatives was evaluated in a panel of cancer cell lines: human breast (BC-1), human lung (Lu1), human colon (Col2) and human oral epidermoid carcinoma (KB). Compounds 2a (acetylation of 2), 3b (oxidation of 3) and 2c (hydrogenation of 2) exhibited the highest anticancer activity against human lung cancer cells, with ED50 values of 0.19, 0.25 and 0.63 μg/mL, respectively.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.
Resumo:
Työn tavoitteena oli selvittää asiantuntijapalvelujen tuotteistamisen mahdollisuuksia näiden palvelujen markkinoinnin tehostamisessa. Kirjallisuuden avulla selvitettiin ensin asiantuntijapalvelujen ominaispiirteet ja palvelujen tuotteistamisprosessi sekä siihen liittyvä palvelutuotteen rakentaminen. Selvitystyön pohjalta rakennettiin palvelujen asiakaslähtöinen tuotteistamisprosessi. Työn empiiristä osaa varten kerättiin tutkimusaineisto haastattelemalla sekä yrityksen asiakkaita että omia asiantuntijoita. Tutkimusaineiston analysoinnin perusteella segmentoitiin asiantuntijapalveluja ostavat asiakkaat. Asiantuntijapalvelujen ostamista ovat rajoittaneet sekä palvelujen epäonnistunut asemointi asiakkaiden keskuudessa että ilman markkinoinnillisia tavoitteita suoritettu tuotteistamisprosessi. Toimenpide-ehdotuksena esitetään asiantuntijapalvelujen uudelleenasemointia siten, että palvelujen ominaispiirteiden vaikutukset asiakkaiden mielikuvaan palvelutuotteista huomioidaan. Lisäksi asiantuntijapalvelujen tuotteistamista on kussakin asiakassegmentissä jatkettava tutkimuksessa selvitettyjen asiakastarpeiden pohjalta. Asiantuntijapalvelujen tuotteistamisessa on kussakin segmentissä omat tavoitteensa, jotka on huomioitava, jotta tuotteistamistoimenpiteillä olisi asiantuntijapalvelujen markkinointia tehostava vaikutus.
Resumo:
In view of anticancer activity of 7 β-acetoxywithanolide D (2) and 7β-16α-diacetoxywithonide D (3), isolated from the leaves of Acnistus arborescens (Solanaceae), five withanolide derivatives were obtained and their structures were determined by NMR, MS and IV data analysis. The in vitro anticancer activity of these derivatives was evaluated in a panel of cancer cell lines: human breast (BC-1), human lung (Lu1), human colon (Col2) and human oral epidermoid carcinoma (KB). Compounds 2a (acetylation of 2), 3b (oxidation of 3) and 2c (hydrogenation of 2) exhibited the highest anticancer activity against human lung cancer cells, with ED50 values of 0.19, 0.25 and 0.63 μg/mL, respectively.