948 resultados para Classes de palavras
Resumo:
We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.
Resumo:
The thesis applies the ICC tecniques to the probabilistic polinomial complexity classes in order to get an implicit characterization of them. The main contribution lays on the implicit characterization of PP (which stands for Probabilistic Polynomial Time) class, showing a syntactical characterisation of PP and a static complexity analyser able to recognise if an imperative program computes in Probabilistic Polynomial Time. The thesis is divided in two parts. The first part focuses on solving the problem by creating a prototype of functional language (a probabilistic variation of lambda calculus with bounded recursion) that is sound and complete respect to Probabilistic Prolynomial Time. The second part, instead, reverses the problem and develops a feasible way to verify if a program, written with a prototype of imperative programming language, is running in Probabilistic polynomial time or not. This thesis would characterise itself as one of the first step for Implicit Computational Complexity over probabilistic classes. There are still open hard problem to investigate and try to solve. There are a lot of theoretical aspects strongly connected with these topics and I expect that in the future there will be wide attention to ICC and probabilistic classes.
Resumo:
A permutation is said to avoid a pattern if it does not contain any subsequence which is order-isomorphic to it. Donald Knuth, in the first volume of his celebrated book "The art of Computer Programming", observed that the permutations that can be computed (or, equivalently, sorted) by some particular data structures can be characterized in terms of pattern avoidance. In more recent years, the topic was reopened several times, while often in terms of sortable permutations rather than computable ones. The idea to sort permutations by using one of Knuth’s devices suggests to look for a deterministic procedure that decides, in linear time, if there exists a sequence of operations which is able to convert a given permutation into the identical one. In this thesis we show that, for the stack and the restricted deques, there exists an unique way to implement such a procedure. Moreover, we use these sorting procedures to create new sorting algorithms, and we prove some unexpected commutation properties between these procedures and the base step of bubblesort. We also show that the permutations that can be sorted by a combination of the base steps of bubblesort and its dual can be expressed, once again, in terms of pattern avoidance. In the final chapter we give an alternative proof of some enumerative results, in particular for the classes of permutations that can be sorted by the two restricted deques. It is well-known that the permutations that can be sorted through a restricted deque are counted by the Schrӧder numbers. In the thesis, we show how the deterministic sorting procedures yield a bijection between sortable permutations and Schrӧder paths.
Resumo:
In diesem Arbeitspapier will ich zur künftigen Forschung über soziale Stratifikation in Afrika beitragen, indem ich die theoretischen Implikationen und empirischen Herausforderungen der Konzepte "Elite" und "Mittelklasse" untersuche. Diese Konzepte stammen aus teilweise miteinander konkurrierenden Theorietraditionen. Außerdem haben Sozialwissenschaftler und Historiker sie zu verschiedenen Zeiten und mit Bezug auf verschiedene Regionen unterschiedlich verwendet. So haben Afrikaforscher und -forscherinnen soziale Formationen, die in anderen Teilen der Welt als Mittelklasse kategorisiert wurden, meist als Eliten aufgefasst und tun dies zum Teil noch heute. Elite und Mittelklasse sind aber nicht nur Begriffe der sozialwissenschaftlichen Forschung, sondern zugleich Kategorien der sozialen und politischen Praxis. Die Art und Weise, wie Menschen diese Begriffe benutzen, um sich selbst oder andere zu beschreiben, hat wiederum Rückwirkungen auf sozialwissenschaftliche Diskurse und umgekehrt. Das Arbeitspapier setzt sich mit beiden Aspekten auseinander: mit der Geschichte der theoretischen Debatten über Elite und Mittelklasse und damit, was wir aus empirischen Studien über die umstrittenen Selbstverortungen sozialer Akteure lernen können und über ihre sich verändernden Auffassungen und Praktiken von Elite- oder Mittelklasse-Sein. Weil ich überzeugt bin, dass künftige Forschung zu sozialer Stratifikation in Afrika außerordentlich viel von einer historisch und regional vergleichenden Perspektive profitieren kann, analysiert dieses Arbeitspapier nicht nur Untersuchungen zu afrikanischen Eliten und Mittelklassen, sondern auch eine Fülle von Studien zur Geschichte der Mittelklassen in Europa und Nordamerika sowie zu den neuen Mittelklassen im Globalen Süden.
Resumo:
The structure of groups which have at most two isomorphism classes of derived subgroups (D-2-groups) is investigated. A complete description of D-2-groups is obtained in the case where the derived subgroup is finite: the solution leads an interesting number theoretic problem. In addition, detailed information is obtained about soluble D-2-groups, especially those with finite rank, where algebraic number fields play an important role. Also, detailed structural information about insoluble D-2-groups is found, and the locally free D-2-groups are characterized.
Resumo:
After teaching regular education secondary mathematics for seven years, I accepted a position in an alternative education high school. Over the next four years, the State of Michigan adopted new graduation requirements phasing in a mandate for all students to complete Geometry and Algebra 2 courses. Since many of my students were already struggling in Algebra 1, getting them through Geometry and Algebra 2 seemed like a daunting task. To better instruct my students, I wanted to know how other teachers in similar situations were addressing the new High School Content Expectations (HSCEs) in upper level mathematics. This study examines how thoroughly alternative education teachers in Michigan are addressing the HSCEs in their courses, what approaches they have found most effective, and what issues are preventing teachers and schools from successfully implementing the HSCEs. Twenty-six alternative high school educators completed an online survey that included a variety of questions regarding school characteristics, curriculum alignment, implementation approaches and issues. Follow-up phone interviews were conducted with four of these participants. The survey responses were used to categorize schools as successful, unsuccessful, and neutral schools in terms of meeting the HSCEs. Responses from schools in each category were compared to identify common approaches and issues among them and to identify significant differences between school groups. Data analysis showed that successful schools taught more of the HSCEs through a variety of instructional approaches, with an emphasis on varying the ways students learned the material. Individualized instruction was frequently mentioned by successful schools and was strikingly absent from unsuccessful school responses. The main obstacle to successful implementation of the HSCEs identified in the study was gaps in student knowledge. This caused pace of instruction to also be a significant issue. School representatives were fairly united against the belief that the Algebra 2 graduation requirement was appropriate for all alternative education students. Possible implications of these findings are discussed.
Resumo:
Does there exist a Steiner Triple System on v points, whose blocks can be partitioned into partial parallel classes of size m, where m ≤ [v⁄3], m | b and b is the number of blocks of the STS(v)? We give the answer for 9 ≤ v ≤ 43. We also show that whenever 2|b, v ≡ 3 (mod 6) we can find an STS(v) whose blocks can be partitioned into partial parallel classes of size 2, and whenever 4|b , v ≡ 3 (mod 6), there exists an STS(v) whose blocks can be partitioned into partial parallel classes of size 4.