922 resultados para Central pulse pressure
Resumo:
Objectives: To assess the validity of the Waterlow screening tool in a cohort of internal medicine patients and to identify factors contributing to pressure injury. Design: Longitudinal cohort study Setting: A tertiary hospital in Brisbane, Australia Participants: 274 patients admitted through the Emergency Department or outpatient clinics and expected to remain in hospital for at least three days were included in the study. The mean age was 65.3 years. Interventions: Patients were screened on admission using the Waterlow screening tool. Every second day, their pressure ulcer status was monitored and recorded. Main outcome measures: Pressure ulcer incidence Results: Fifteen participants (5.5%) had an existing pressure ulcer and a further 12 (4.4%) developed a pressure ulcer during their hospital stay. Sensitivity of the Waterlow scale was 0.67, (95% CI: 0.35 to 0.88); specificity 0.79, (95% CI: 0.73 to 0.85); PPV 0.13, (95% CI: 0.07 to 0.24); NPV 0.98, (95% CI: 0.94 to 0.99). Conclusion: This study provides further evidence of the poor predictive validity of the Waterlow scale. A suitably powered randomised controlled trial is urgently needed to provide definitive evidence about the usefulness of the Waterlow scale compared with other screening tools and with clinical judgement.
Resumo:
The human-technology nexus is a strong focus of Information Systems (IS) research; however, very few studies have explored this phenomenon in anaesthesia. Anaesthesia has a long history of adoption of technological artifacts, ranging from early apparatus to present-day information systems such as electronic monitoring and pulse oximetry. This prevalence of technology in modern anaesthesia and the rich human-technology relationship provides a fertile empirical setting for IS research. This study employed a grounded theory approach that began with a broad initial guiding question and, through simultaneous data collection and analysis, uncovered a core category of technology appropriation. This emergent basic social process captures a central activity of anaesthestists and is supported by three major concepts: knowledge-directed medicine, complementary artifacts and culture of anaesthesia. The outcomes of this study are: (1) a substantive theory that integrates the aforementioned concepts and pertains to the research setting of anaesthesia and (2) a formal theory, which further develops the core category of appropriation from anaesthesia-specific to a broader, more general perspective. These outcomes fulfill the objective of a grounded theory study, being the formation of theory that describes and explains observed patterns in the empirical field. In generalizing the notion of appropriation, the formal theory is developed using the theories of Karl Marx. This Marxian model of technology appropriation is a three-tiered theoretical lens that examines appropriation behaviours at a highly abstract level, connecting the stages of natural, species and social being to the transition of a technology-as-artifact to a technology-in-use via the processes of perception, orientation and realization. The contributions of this research are two-fold: (1) the substantive model contributes to practice by providing a model that describes and explains the human-technology nexus in anaesthesia, and thereby offers potential predictive capabilities for designers and administrators to optimize future appropriations of new anaesthetic technological artifacts; and (2) the formal model contributes to research by drawing attention to the philosophical foundations of appropriation in the work of Marx, and subsequently expanding the current understanding of contemporary IS theories of adoption and appropriation.
Resumo:
Effective environmental governance is hampered by the continuing presumption of the state as central actor in the domestic and international political contexts. Over the last 20 years, the traditional 'Westphalian' conception of the sovereign state has come under increasing pressure not only in theory, but also in practice, as evidenced by the increasing importance attributed to the participation of quasi-government and non-government actors in decision-making in domestic and international political issues. This paper is a contribution to the on-going debate about the meaning of effective environmental governance by mapping out a post-Westphalian conception of governance. In particular, it defines governance in relation to the protection of biodiversity; highlights obstacles to effective governance in this area, and discusses forming environmental management plans and environmental governance regimes to implement them. The final section of the paper suggests seven directions for ensuring the realisation of effective environmental governance.
Resumo:
This study was designed to derive central and peripheral oxygen transmissibility (Dk/t) thresholds for soft contact lenses to avoid hypoxia-induced corneal swelling (increased corneal thickness) during open eye wear. Central and peripheral corneal thicknesses were measured in a masked and randomized fashion for the left eye of each of seven subjects before and after 3 h of afternoon wear of five conventional hydrogel and silicone hydrogel contact lens types offering a range of Dk/t from 2.4 units to 115.3 units. Curve fitting for plots of change in corneal thickness versus central and peripheral Dk/t found threshold values of 19.8 and 32.6 units to avoid corneal swelling during open eye contact lens wear for a typical wearer. Although some conventional hydrogel soft lenses are able to achieve this criterion for either central or peripheral lens areas (depending on lens power), in general, no conventional hydrogel soft lenses meet both the central and peripheral thresholds. Silicone hydrogel contact lenses typically meet both the central and peripheral thresholds and use of these lenses therefore avoids swelling in all regions of the cornea. ' 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 361–365, 2010
Resumo:
A statistical modeling method to accurately determine combustion chamber resonance is proposed and demonstrated. This method utilises Markov-chain Monte Carlo (MCMC) through the use of the Metropolis-Hastings (MH) algorithm to yield a probability density function for the combustion chamber frequency and find the best estimate of the resonant frequency, along with uncertainty. The accurate determination of combustion chamber resonance is then used to investigate various engine phenomena, with appropriate uncertainty, for a range of engine cycles. It is shown that, when operating on various ethanol/diesel fuel combinations, a 20% substitution yields the least amount of inter-cycle variability, in relation to combustion chamber resonance.
Resumo:
This study aimed to investigate the influence of water loading upon intraocular pressure (IOP), ocular pulse amplitude (OPA) and axial length. Twenty one young adult subjects who were classified based on their spherical equivalent refraction as either myopes (n=11), or emmetropes (n=10) participated. Measures of IOP, OPA and ocular biometrics were collected before, and then 10, 15, 25 and 30 minutes following the ingestion of 1000 ml of water. Significant increases in both IOP and OPA were found to occur following water loading (p<0.0001), with peaks in both parameters occurring at 10 minutes after water loading (mean ± SEM increase of 2.24 ± 0.31 mmHg in IOP and 0.46 ± 0.06 mmHg in OPA). Axial length was found to reduce significantly following water loading (p=0.0005), with the largest reduction in axial length evident 10 minutes after water drinking (mean decrease 12 ± 3 µm). A significant time by refractive error group interaction (p=0.048) was found in axial length, indicative of a different pattern of change in eye length following water loading between the myopic and emmetropic populations. The largest difference in axial length change was evident at 10 minutes after water loading with a 17 ± 5 µm reduction in axial length evident in the myopes and only a 6 ± 2 µm reduction in the emmetropes. These findings illustrate significant changes in ocular parameters in young adult subjects following water loading.
Resumo:
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study.The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.