975 resultados para Cell Line, Tumor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many mechanisms have been proposed to explain why immune responses against human tumor antigens are generally ineffective. For example, tumor cells have been shown to develop active immune evasion mechanisms. Another possibility is that tumor antigens are unable to optimally stimulate tumor-specific T cells. In this study we have used HLA-A2/Melan-A peptide tetramers to directly isolate antigen-specific CD8(+) T cells from tumor-infiltrated lymph nodes. This allowed us to quantify the activation requirements of a representative polyclonal yet monospecific tumor-reactive T cell population. The results obtained from quantitative assays of intracellular Ca(2+) mobilization, TCR down-regulation, cytokine production and induction of effector cell differentiation indicate that the naturally produced Melan-A peptides are weak agonists and are clearly suboptimal for T cell activation. In contrast, optimal T cell activation was obtained by stimulation with recently defined peptide analogues. These findings provide a molecular basis for the low immunogenicity of tumor cells and suggest that patient immunization with full agonist peptide analogues may be essential for stimulation and maintenance of anti-tumor T cell responses in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty monoclonal antibodies from eight laboratories exchanged after the First Workshop on Monoclonal Antibodies to Human Melanoma held in March 1981 at NIH were tested in an antibody-binding radioimmunoassay using a panel of 28 different cell lines. This panel included 12 melanomas, three neuroblastomas, four gliomas, one retinoblastoma, four colon carcinomas, one lung carcinoma, one cervical carcinoma, one endometrial carcinoma, and one breast carcinoma. The reactivity pattern of the 30 monoclonal antibodies tested showed that none of them were directed against antigens strictly restricted to melanoma, but that several of them recognize antigenic structures preferentially expressed on melanoma cells. A large number of antibodies were found to crossreact with gliomas and neuroblastomas. Thus, they seem to recognize neuroectoderm associated differentiation antigens. Four monoclonal antibodies produced in our laboratory were further studied for the immunohistological localization of melanoma associated antigens on fresh tumor material. In a three-layer biotin-avidin-peroxidase system each antibody showed a different staining pattern with the tumor cells, suggesting that they were directed against different antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose/Objective(s): Radiotherapy is an effective treatment modality against cancer. Despite recent technical progresses in radiation delivery precision, toxicity to healthy tissues remains the main limiting factor. RasGAP is a regulator of the Ras and Rho pathway; it has either a pro- or anti-apoptotic activity depending on the level of caspase expressed in the cell. The RasGAP derived peptide: TAT-RasGAP317 - 326 is the minimal sequence known to sensitize cancer cells, but not healthy cells, to genotoxin-induced apoptosis. In this study the TAT-RasGAP317 - 326 radio-sensitizing effect was tested in vitro and in vivo.Materials/Methods: Two weeks clonogenic forming assays with 5 human cancer cells (PANC-1, HCT116, U87, U251 and HeLa) and a non tumorigenic cell line (HaCaT) were performed. Cells were exposed to 0, 1, 2 and 4 Gy with or without 20 mMTAT-RasGAP317 - 326. Twenty mMTAT peptide was also used as control. TAT-RasGAP317 - 326 effect was also tested in tumor xenograft mouse models. Mice bearing HCT116 tumors (WT or p53 mutant) received 1.65 mg/kg TAT-RasGAP317 - 326 i.p. injected and were locally irradiated for 10 days with 3 Gy. Tumor volume was then followed during a minimum of 20 days. Control mice were treated with a single modality, either with TAT-RasGAP317 - 326 or with radiotherapy.Results: At all the tested radiation doses TAT-RasGAP317 - 326 showed a significant supra additive radio-sensitizing effect on all the tested tumor cell lines. Furthermore, it showed no sensitizing effect on the non tumorigenic cell line. In vivo, TAT-RasGAP317 - 326 also showed a significantly radio-sensitizing effect as shown by a significant higher reduction in tumor volume as much as by a significant tumor growth delay.Conclusions: Taken together our data suggest that TAT-RasGAP317 - 326 has a radio-sensitizing effect on in vivo and in vitro tumors without any effect on healthy tissues. Therefore TAT-RasGAP317 - 326 should be considered as a novel and attractive sensitizer compound allowing an improvement of the therapeutic interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisera highly specific for carcinoembryonic antigen (CEA) from New Zealand White rabbits and a goat reacted strongly in antibody binding tests with cultured tumor cell lines, irrespective of the ability of the cell lines to produce CEA. The most reactive were colon carcinoma and melanoma cell lines, the former known to produce CEA and the latter not associated with CEA production. The reactivity was not diminished by absorption with perchloric acid extracts of normal lung or spleen, whereas absoprtion with purified CEA preparations abolished the reactivity. Quantitative absorption studies indicated that reactivity against CEA-producing cell lines could be totally removed by absorption with other CEA-producing lines but not with melanoma cell lines. Reactivity against melanoma cell lines could be completely removed by colon carcinoma cells as well as by melanoma cells. Antisera raised against purified CEA, after absorption with extracts of normal lung, still contained two populations of antibodies, one that binds a newly described antigen cross-reacting with CEA which is present on melanoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we explore the possibility of improving, by genetic engineering, the resistance of insulin-secreting cells to the metabolic and inflammatory stresses that are anticipated to limit their function and survival when encapsulated and transplanted in a type 1 diabetic environment. We show that transfer of the Bcl-2 antiapoptotic gene, and of genes specifically interfering with cytokine intracellular signaling pathways, greatly improves resistance of the cells to metabolic limitations and inflammatory stresses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the major histocompatibility complex class II I-E dependence of mouse mammary tumor virus (MMTV) superantigens, we constructed hybrids between the I-E-dependent MMTV(GR) and the I-E-independent mtv-7 superantigens and tested them in vivo. Our results suggest that, although the C-terminal third mediates I-A interaction, additional binding sites are located elsewhere in the superantigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach for the identification of tumor antigen-derived sequences recognized by CD8(+) cytolytic T lymphocytes (CTL) consists in using synthetic combinatorial peptide libraries. Here we have screened a library composed of 3.1 x 10(11) nonapeptides arranged in a positional scanning format, in a cytotoxicity assay, to search the antigen recognized by melanoma-reactive CTL of unknown specificity. The results of this analysis enabled the identification of several optimal peptide ligands, as most of the individual nonapeptides deduced from the primary screening were efficiently recognized by the CTL. The results of the library screening were also analyzed with a mathematical approach based on a model of independent and additive contribution of individual amino acids to antigen recognition. This biometrical data analysis enabled the retrieval, in public databases, of the native antigenic peptide SSX-2(41-49), whose sequence is highly homologous to the ones deduced from the library screening, among the ones with the highest stimulatory score. These results underline the high predictive value of positional scanning synthetic combinatorial peptide library analysis and encourage its use for the identification of CTL ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATP, released by both neurons and glia, is an important mediator of brain intercellular communication. We find that selective activation of purinergic P2Y1 receptors (P2Y1R) in cultured astrocytes triggers glutamate release. By total internal fluorescence reflection imaging of fluorescence-labeled glutamatergic vesicles, we document that such release occurs by regulated exocytosis. The stimulus-secretion coupling mechanism involves Ca2+ release from internal stores and is controlled by additional transductive events mediated by tumor necrosis factor-alpha (TNFalpha) and prostaglandins (PG). P2Y1R activation induces release of both TNFalpha and PGE2 and blocking either one significantly reduces glutamate release. Accordingly, astrocytes from TNFalpha-deficient (TNF(-/-)) or TNF type 1 receptor-deficient (TNFR1(-/-)) mice display altered P2Y1R-dependent Ca2+ signaling and deficient glutamate release. In mixed hippocampal cultures, the P2Y1R-evoked process occurs in astrocytes but not in neurons or microglia. P2Y1R stimulation induces Ca2+ -dependent glutamate release also from acute hippocampal slices. The process in situ displays characteristics resembling those in cultured astrocytes and is distinctly different from synaptic glutamate release evoked by high K+ stimulation as follows: (a) it is sensitive to cyclooxygenase inhibitors; (b) it is deficient in preparations from TNF(-/-) and TNFR1(-/-) mice; and (c) it is inhibited by the exocytosis blocker bafilomycin A1 with a different time course. No glutamate release is evoked by P2Y1R-dependent stimulation of hippocampal synaptosomes. Taken together, our data identify the coupling of purinergic P2Y1R to glutamate exocytosis and its peculiar TNFalpha- and PG-dependent control, and we strongly suggest that this cascade operates selectively in astrocytes. The identified pathway may play physiological roles in glial-glial and glial-neuronal communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TWEAK is a recently cloned novel member of the TNF ligand family. Here we show that soluble TWEAK is sufficient to induce apoptosis in Kym-1 cells within 18 h. TWEAK-induced apoptosis is indirect and is mediated by the interaction of endogenous TNF and TNF receptor (TNFR)1, as each TNFR1-Fc, neutralizing TNF-specific antibodies and TNFR1-specific Fab fragments efficiently antagonize cell death induction. In addition to this indirect mode of action, co-stimulation of Kym-1 cells with TWEAK enhances TNFR1-mediated cell death induction. In contrast to TNF, TWEAK does only modestly activate NF-kappaB or c-jun N-terminal kinase (JNK) in Kym-1 cells. Although TWEAK binding to Kym-1 cells is easily detectable by flow cytometric analysis, we found neither evidence for expression of the recently identified TWEAK receptor Apo3/TRAMP/wsl/DR3/LARD, nor indications for direct interactions of TWEAK with TNFR. Together, these characteristics of TWEAK-induced signaling in Kym-1 cells argue for the existence of an additional, still undefined non-death domain-containing TWEAK receptor in Kym-1 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TNF family member receptor activator for NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin are key regulators of bone remodeling but also influence cellular functions of tumor and immune effector cells. In this work, we studied the involvement of RANK-RANKL interaction in NK cell-mediated immunosurveillance of acute myeloid leukemia (AML). Substantial levels of RANKL were found to be expressed on leukemia cells in 53 of 78 (68%) investigated patients. Signaling via RANKL into the leukemia cells stimulated their metabolic activity and induced the release of cytokines involved in AML pathophysiology. In addition, the immunomodulatory factors released by AML cells upon RANKL signaling impaired the anti-leukemia reactivity of NK cells and induced RANK expression, and NK cells of AML patients displayed significantly upregulated RANK expression compared with healthy controls. Treatment of AML cells with the clinically available RANKL Ab Denosumab resulted in enhanced NK cell anti-leukemia reactivity. This was due to both blockade of the release of NK-inhibitory factors by AML cells and prevention of RANK signaling into NK cells. The latter was found to directly impair NK anti-leukemia reactivity with a more pronounced effect on IFN-γ production compared with cytotoxicity. Together, our data unravel a previously unknown function of the RANK-RANKL molecule system in AML pathophysiology as well as NK cell function and suggest that neutralization of RANKL with therapeutic Abs may serve to reinforce NK cell reactivity in leukemia patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bone marrow constitutes a favorable environment for long-lived antibody-secreting plasma cells, providing blood-circulating antibody. Plasma cells are also present in mucosa-associated lymphoid tissue (MALT) to mediate local frontline immunity, but how plasma cell survival there is regulated is not known. Here we report that a proliferation-inducing ligand (APRIL) promoted survival of human upper and lower MALT plasma cells by upregulating expression of the antiapoptotic proteins bcl-2, bcl-xL, and mcl-1. The in situ localization of APRIL was consistent with such a prosurvival role in MALT. In upper MALT, tonsillar epithelium produced APRIL. Upon infection, APRIL production increased considerably when APRIL-secreting neutrophils recruited from the blood infiltrated the crypt epithelium. Heparan sulfate proteoglycans (HSPGs) retained secreted APRIL in the subepithelium of the infected zone to create APRIL-rich niches, wherein IgG-producing plasma cells accumulated. In lower MALT, neutrophils were the unique source of APRIL, giving rise to similar niches for IgA-producing plasmocytes in villi of lamina propria. Furthermore, we found that mucosal humoral immunity in APRIL-deficient mice is less persistent than in WT mice. Hence, production of APRIL by inflammation-recruited neutrophils may create plasma cell niches in MALT to sustain a local antibody production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Families of clonally expressed major histocompatibility complex (MHC) class I-specific receptors provide specificity to and regulate the function of natural killer (NK) cells. One of these receptors, mouse Ly49A, is expressed by 20% of NK cells and inhibits the killing of H-2D(d) but not D(b)-expressing target cells. Here, we show that the trans-acting factor TCF-1 binds to two sites in the Ly49A promoter and regulates its activity. Moreover, we find that TCF-1 determines the size of the Ly49A NK cell subset in vivo in a dosage-dependent manner. We propose that clonal Ly49A acquisition during NK cell development is regulated by TCF-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice, and dacarbazine (DTIC) is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and antimetastatic properties. The objective of this study was to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the standard agent for melanoma treatment, DTIC. Cell death was evaluated by flow cytometry for annexin V and iodide propide, cleaved caspase 8, and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice bearing B16F10 melanoma were treated with DTIC, DM-1, or both therapies. DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this the same cell line. DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with DTIC, besides survival rate increase. Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenesis of hepatosplenic T-cell lymphoma (HSTL), a rare entity mostly derived from γδ T cells and usually with a fatal outcome, remains largely unknown. In this study, HSTL samples (7γδ and 2αβ) and the DERL2 HSTL cell line were subjected to combined gene-expression profiling and array-based comparative genomic hybridization. Compared with other T-cell lymphomas, HSTL had a distinct molecular signature irrespective of TCR cell lineage. Compared with peripheral T-cell lymphoma, not otherwise specified and normal γδ T cells, HSTL overexpressed genes encoding NK-cell-associated molecules, oncogenes (FOS and VAV3), the sphingosine-1-phosphatase receptor 5 involved in cell trafficking, and the tyrosine kinase SYK, whereas the tumor-suppressor gene AIM1 (absent in melanoma 1) was among the most down-expressed. We found highly methylated CpG islands of AIM1 in DERL2 cells, and decitabine treatment induced a significant increase in AIM1 transcripts. Syk was present in HSTL cells and DERL2 cells contained phosphorylated Syk and were sensitive to a Syk inhibitor in vitro. Genomic profiles confirmed recurrent isochromosome 7q (n = 6/9) without alterations at the SYK and AIM1 loci. Our results identify a distinct molecular signature for HSTL and highlight oncogenic pathways that offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents.