936 resultados para Carbonaceous aerosols
Resumo:
The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.
Resumo:
Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth >0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence in northwestern Amazonia (5 degrees S-5 degrees N, 60 degrees W-70 degrees W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina. Citation: Zhang, Y., R. Fu, H. Yu, Y. Qian, R. Dickinson, M. A. F. Silva Dias, P. L. da Silva Dias, and K. Fernandes (2009), Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, doi: 10.1029/2009GL037180.
Resumo:
The scavenging processes of chemical species have been previously studied with numerical modeling, in order to understand the gas and particulate matter intra-reservoir transferences. In this study, the atmospheric (RAMS) and scavenging (B.V.2) models were used, in order to simulate sulfate concentrations in rainwater using scavenging processes as well as the local atmospheric conditions obtained within the LBA Project in the State of Rondonia, during a dry-to-wet transition season. Two case studies were conducted. The RAMS atmospheric simulation of these events presented satisfactory results, showing the detailed microphysical processes of clouds in the Amazonian region. On the other hand, with cloud entrainments, observed values have been overestimated. Modeled sulfate rainwater concentration, using exponential decay and cloud heights of 16 km and no entrainments, presented the best results, reaching 97% of the observed value. The results, using shape parameter 5, are the best, improving the overall result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the main microphysical characteristics of clouds developing in polluted and clean conditions in the biomass-burning season of the Amazon region are examined, with special attention to the spectral dispersion of the cloud droplet size distribution and its potential impact on climate modeling applications. The dispersion effect has been shown to alter the climate cooling predicted by the so-called Twomey effect. In biomass-burning polluted conditions, high concentrations of low dispersed cloud droplets are found. Clean conditions revealed an opposite situation. The liquid water content (0.43 +/- 0.19 g m(-3)) is shown to be uncorrelated with the cloud drop number concentration, while the effective radius is found to be very much correlated with the relative dispersion of the size distribution (R(2) = 0.81). The results suggest that an increase in cloud condensation nuclei concentration from biomass-burning aerosols may lead to an additional effect caused by a decrease in relative dispersion. Since the dry season in the Amazonian region is vapor limiting, the dispersion effect of cloud droplet size distributions could be substantially larger than in other polluted regions.
Resumo:
The State of Sao Paulo is the richest in Brazil, responsible for over 30% of the Brazilian gross rate. It has a population of around 30 million and its economy is based on agriculture and industrial products. Any change in climate can have a profound influence on the socio-economics of the State. In order to determine changes in total and extreme rainfall over Sao Paulo State, climate change indices derived from daily precipitation data were calculated using specially designed software. Maps of trends for a subset of 59 rain gauge stations were analysed for the period 1950-1999 and also for a subset of this period, 1990-1999, representing more recent climate. A non-parametric Mann-Kendall test was applied to the time series. Maps of trends for six annual precipitation indices (annual total precipitation (PRCPTOT), very heavy precipitation days (R20mm), events greater than the 95th percentile (R95p), maximum five days precipitation total (RX5day), the length of the largest wet spell (CWD) and the length of the largest dry spell (CDD)) were analysed for the entire period. These exhibited statistically significant trends associated with a wetter climate. A significant increase in PRCPTOT, associated with very heavy precipitation days, were observed at more than 45% of the rain gauge stations. The Mann-Kendall test identified that the positive trend in PRCPTOT is possibly related to the increase in the R95p and R20mm indices. Therefore, the results suggest that there has been a change in precipitation intensity. In contrast, the indices for the more recent shorter time series are significantly different to the longer term indices. The results indicate that intense precipitation is becoming concentrated in a few days and spread over the period when the CDD and R20mm indices show positive trends, while negative ones are seen in the RX5day index. The trends found could be related to many anthropogenic aspects such as biomass burning aerosols and land use.
Resumo:
This paper presents an analysis of ground-based Aerosol Optical Depth (AOD) observations by the Aerosol Robotic Network (AERONET) in South America from 2001 to 2007 in comparison with the satellite AOD product of Moderate Resolution Imaging Spectroradiometer (MODIS), aboard TERRA and AQUA satellites. Data of 12 observation sites were used with primary interest in AERONET sites located in or downwind of areas with high biomass burning activity and with measurements available for the full time range. Fires cause the predominant carbonaceous aerosol emission signal during the dry season in South America and are therefore a special focus of this study. Interannual and seasonal behavior of the observed AOD at different sites were investigated, showing clear differences between purely fire and urban influenced sites. An intercomparison of AERONET and MODIS AOD annual correlations revealed that neither an interannual long-term trend may be observed nor that correlations differ significantly owing to different overpass times of TERRA and AQUA. Individual anisotropic representativity areas for each AERONET site were derived by correlating daily AOD of each site for all years with available individual MODIS AOD pixels gridded to 1 degrees x 1 degrees. Results showed that for many sites a good AOD correlation (R(2) > 0.5) persists for large, often strongly anisotropic, areas. The climatological areas of common regional aerosol regimes often extend over several hundreds of kilometers, sometimes far across national boundaries. As a practical application, these strongly inhomogeneous and anisotropic areas of influence are being implemented in the tropospheric aerosol data assimilation system of the Coupled Chemistry-Aerosol-Tracer Transport Model coupled to the Brazilian Regional Atmospheric Modeling System (CCATT-BRAMS) at the Brazilian National Institute for Space Research (INPE). This new information promises an improved exploitation of local site sampling and, thus, chemical weather forecast.
Resumo:
Through rapid reactions with ozone, which can initiate the formation of secondary organic aerosols, the emission of sesquiterpenes from vegetation in Amazonia may have significant impacts on tropospheric chemistry and climate. Little is known, however, about sesquiterpene emissions, transport, and chemistry within plant canopies owing to analytical difficulties stemming from very low ambient concentrations, high reactivities, and sampling losses. Here, we present ambient sesquiterpene concentration measurements obtained during the 2010 dry season within and above a primary tropical forest canopy in Amazonia. We show that by peaking at night instead of during the day, and near the ground instead of within the canopy, sesquiterpene concentrations followed a pattern different from that of monoterpenes, suggesting that unlike monoterpene emissions, which are mainly light dependent, sesquiterpene emissions are mainly temperature dependent. In addition, we observed that sesquiterpene concentrations were inversely related with ozone (with respect to time of day and vertical concentration), suggesting that ambient concentrations are highly sensitive to ozone. These conclusions are supported by experiments in a tropical rain forest mesocosm, where little atmospheric oxidation occurs and sesquiterpene and monoterpene concentrations followed similar diurnal patterns. We estimate that the daytime dry season ozone flux of -0.6 to -1.5 nmol m(-2) s(-1) due to in-canopy sesquiterpene reactivity could account for 7%-28% of the net ozone flux. Our study provides experimental evidence that a large fraction of total plant sesquiterpene emissions (46%-61% by mass) undergo within-canopy ozonolysis, which may benefit plants by reducing ozone uptake and its associated oxidative damage.
Resumo:
Aerosol physical and chemical properties were measured in a forest site in central Amazonia (Cuieiras reservation, 2.61S; 60.21W) during the dry season of 2004 (Aug-Oct). Aerosol light scattering and absorption, mass concentration, elemental composition and size distributions were measured at three tower levels (Ground: 2 m; Canopy: 28 m, and Top: 40 m). For the first time, simultaneous eddy covariance fluxes of fine mode particles and volatile organic compounds (VOC) were measured above the Amazonian forest canopy. Aerosol fluxes were measured by eddy covariance using a Condensation Particle Counter (CPC) and a sonic anemometer. VOC fluxes were measured by disjunct eddy covariance using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). At nighttime, a strong vertical gradient of phosphorus and potassium in the aerosol coarse mode was observed, with higher concentrations at Ground level. This suggests a source of primary biogenic particles below the canopy. Equivalent black carbon measurements indicate the presence of light-absorbing aerosols from biogenic origin. Aerosol number size distributions typically consisted of superimposed Aitken (76 nm) and accumulation modes (144 nm), without clear events of new particle formation. Isoprene and monoterpene fluxes reached respectively 7.4 and 0.82 mg m(-2) s(-1) around noon. An average fine particle flux of 0.05 +/- 0.10 10(6) m(-2) s(-1) was calculated, denoting an equilibrium between emission and deposition fluxes of fine mode particles at daytime. No significant correlations were found between VOC and fine mode aerosol concentrations or fluxes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.
Resumo:
The aerosol spectral absorption efficiency (alpha(a) in m(2)/g) is measured over an extended wavelength range (350-2500 nm) using an improved calibrated and validated reflectance technique and applied to urban aerosol samples from Sao Paulo, Brazil and from a site in Virginia, Eastern US, that experiences transported urban/industrial aerosol. The average alpha(a) values (similar to 3m(2)/g at 550 nm) for Sao Paulo samples are 10 times larger than a a values obtained for aerosols in Virginia. Sao Paulo aerosols also show evidence of enhanced UV absorption in selected samples, probably associated with organic aerosol components. This extra UV absorption can double the absorption efficiency observed from black carbon alone, therefore reducing by up to 50% the surface UV fluxes, with important implications for climate, UV photolysis rates, and remote sensing from space. Citation: Martins, J.V., P. Artaxo, Y.J. Kaufman, A.D. Castanho, and L.A. Remer (2009), Spectral absorption properties of aerosol particles from 350-2500nm, Geophys. Res. Lett., 36, L13810, doi: 10.1029/2009GL037435.
Resumo:
[1] Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (< 30%) close to the East Asian continent in the North Pacific. For ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble ( Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble ( Fe( II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.
Resumo:
The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondnia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (D-p <= 2.5 mu m) concentrations were similar to 100 mu g m(-3), aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 similar to 5 mu g m(-3)); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.
Resumo:
The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present the first results of a study investigating the processes that control concentrations and sources of Pb and particulate matter in the atmosphere of Sao Paulo City Brazil Aerosols were collected with high temporal resolution (3 hours) during a four-day period in July 2005 The highest Pb concentrations measured coincided with large fireworks during celebration events and associated to high traffic occurrence Our high-resolution data highlights the impact that a singular transient event can have on air quality even in a megacity Under meteorological conditions non-conducive to pollutant dispersion Pb and particulate matter concentrations accumulated during the night leading to the highest concentrations in aerosols collected early in the morning of the following day The stable isotopes of Pb suggest that emissions from traffic remain an Important source of Pb in Sao Paulo City due to the large traffic fleet despite low Pb concentrations in fuels (C) 2010 Elsevier BV All rights reserved
Resumo:
O presente trabalho apresenta estudos sistemãticos da caracterização do carvão de Candiota em termos do seu beneficiamento. O carvão de Candiota possui caracteristicas de moabilidade que o indicam como bastantefriável. A geração de finos (-28 malhas) atinge valores superiores a 20% independente do grau de britagem . As distribuições granulométricas resultantes da britagem do carvão obedecem a equação de ROSIN-RAIIMLER-BENNETT, dentro do intervalo previsto (frações menores do ue -4 malhas e maiores do que 100 malhas). Os valores de n e d ' não variam significativamente com a abertura do britador o, que evidencia sua friabiliade. foram estabelecidas equações que relacionam aberturado britador, coeficientes de distribuição e diâmetro médio.Estudos rni croscópicos demonstraram que, o grau de d i-s seminação da matéria inorgânica é muitointenso , e sua liberação atinge malhas muito pequenas (provavelmente menores do que 400 malhas). O teor de cinzas, como por exemplo do grau de disseminação, não variou significativamente com a diminuição de tamanho, como acontece com outros carvões. Foram estabelecidos dois critérios de liberação das particulas em função da quantidade de matéria carbonosa presente nas unidades mistas (20 - 80% e 5 - 95%, respectivamente). Estes indices de partyculas mistas (5 - 95% de matéria carbonosa) mantiveram-se constantes até tamanhos aproximados de 115 malhas, para logo diminuirem nas frações menores. Ainda assim, para frações menores do que 53 micrômetro a quantidade de mistos ( 5 - 95%) foi de 34%. As curvas de lavabilidade deste carvão (tanto da fração grossa quanto afina), reflexo das caracteristicas anteriores, indicam-no como de muito dificil beneficiamento (lavagem). Isto basicamente é devido ao alto grau de "near gravity matterial" presente e de seu grau de liberação. 0s testes de jigagem por bateladas, bem como outros processos de beneficiamento, demonstraram a dificuldade do beneficiamento deste carvão. O melhor teste de jigagem por bateladas, obteve uma recuperação de materia carbonosa de 73, 21 com um teor de cinzas de 45,51 no concretado (alimentação contendo 50% de cinzas). de 37,59% de cinzas (alimentação de 50% de cinzas). Propõe-se, finalmente, um circuito de beneficiamento convencional do carvão de Candiota, incluindo uma classificação do carvão ROM com o objetivo de separar a alimentação em duas frações (+28 e -28 malhas), seguido de um processo de beneficiamento das frações grosseiras por meios densos (tanques), e um tratamento das frações finas por hidrociclonagem. Os resultados obtidos concluem que o carvão de Candiota é o mais dificil de ser lavado dentre os carvões sul-brasileiros devido ao alto teor de cinzas e ao grau de disseminação, sendo que este teor de cinzas não varia muito com a granulometria, o que implica em um grau de liberação muito baixo. Sugere- se como outra alternativa no seu beneficiamento, o estudo de processos não convencionais que incluem um alto grau de cominuiçáo ate completa liberação.