558 resultados para COUPLINGS
Resumo:
We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753 , to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry- breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems. © 2013 SISSA.
Resumo:
Using the one-loop Coleman-Weinberg effective potential, we derive a general analytic expression for all the derivatives of the effective potential with respect to any number of classical scalar fields. The result is valid for a renormalisable theory in four dimensions with any number of scalars, fermions or gauge bosons. This result corresponds to the zero-external momentum contribution to a general one-loop diagram with N scalar external legs. We illustrate the use of the general result in two simple scalar singlet extensions of the Standard Model, to obtain the dominant contributions to the triple couplings of light scalar particles under the zero external momentum approximation.
Resumo:
The extreme sensitivity of the mass of the Higgs boson to quantum corrections from high mass states, makes it 'unnaturally' light in the standard model. This 'hierarchy problem' can be solved by symmetries, which predict new particles related, by the symmetry, to standard model fields. The Large Hadron Collider (LHC) can potentially discover these new particles, thereby finding the solution to the hierarchy problem. However, the dynamics of the Higgs boson is also sensitive to this new physics. We show that in many scenarios the Higgs can be a complementary and powerful probe of the hierarchy problem at the LHC and future colliders. If the top quark partners carry the color charge of the strong nuclear force, the production of Higgs pairs is affected. This effect is tightly correlated with single Higgs production, implying that only modest enhancements in di-Higgs production occur when the top partners are heavy. However, if the top partners are light, we show that di-Higgs production is a useful complementary probe to single Higgs production. We verify this result in the context of a simplified supersymmetric model. If the top partners do not carry color charge, their direct production is greatly reduced. Nevertheless, we show that such scenarios can be revealed through Higgs dynamics. We find that many color neutral frameworks leave observable traces in Higgs couplings, which, in some cases, may be the only way to probe these theories at the LHC. Some realizations of the color neutral framework also lead to exotic decays of the Higgs with displaced vertices. We show that these decays are so striking that the projected sensitivity for these searches, at hadron colliders, is comparable to that of searches for colored top partners. Taken together, these three case studies show the efficacy of the Higgs as a probe of naturalness.
Resumo:
The gamma-ray decay of excited states of the one-valence-proton nucleus Sb-133 has been studied using cold-neutron induced fission of U-235 and Pu-241 targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe array, coincidences between gamma-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 mu s isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr3(Ce) scintillators, revealed a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus Sn-132 and the valence proton, using Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Resumo:
The synchronization of oscillatory activity in networks of neural networks is usually implemented through coupling the state variables describing neuronal dynamics. In this study we discuss another but complementary mechanism based on a learning process with memory. A driver network motif, acting as a teacher, exhibits winner-less competition (WLC) dynamics, while a driven motif, a learner, tunes its internal couplings according to the oscillations observed in the teacher. We show that under appropriate training the learner motif can dynamically copy the coupling pattern of the teacher and thus synchronize oscillations with the teacher. Then, we demonstrate that the replication of the WLC dynamics occurs for intermediate memory lengths only. In a unidirectional chain of N motifs coupled through teacher-learner paradigm the time interval required for pattern replication grows linearly with the chain size, hence the learning process does not blow up and at the end we observe phase synchronized oscillations along the chain. We also show that in a learning chain closed into a ring the network motifs come to a consensus, i.e. to a state with the same connectivity pattern corresponding to the mean initial pattern averaged over all network motifs.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Física, 2015.
Resumo:
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
Resumo:
The calcitonin gene-related peptide (CGRP) family of G protein- coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in aGαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMPdependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.
Resumo:
We have simulated, using parallel tempering, the three-dimensional Ising spin glass model with binary couplings in a helicoidal geometry. The largest lattice (L520) has been studied using a dedicated computer (the SUE machine). We have obtained, measuring the correlation length in the critical region, strong evidence for a second-order finite-temperature phase transition, ruling out other possible scenarios like a KosterlitzThouless phase transition. Precise values for the ν and ƞ critical exponents are also presented.
Resumo:
Currently academic researches' focus started changing towards protecting IP rights and to transferring them into industrial actors. Accordingly, it is argued that academic's basic research focus started shifting towards applied research as it is essential for the radical inventions to be introduced in a competitive market. This research seeks to understand industry-academia linkages in a high tech field such as nano-crystals. In regards to supporting the technology transfer process within or cross country, this study illustrates the technology development trends and actors' engagement; nano-crystals technology and their interconnections; and maps the organisational (industry-academia) linkages that enhance the commercialisation of radical inventions. The results show that the industry-academia linkages that appeared as decentralized structure are more stable compared to other linkage types. Korean and Japanese organisations present such stable linkages. The linkages are even stronger when they appear as a mono-linkage type. Chinese organisations show a great illustration of such an effective mono-linkage of co-inventorships in high tech research field. The organisations in the US maintain international linkages.
Resumo:
Este trabajo se inscribe en uno de los grandes campos de los estudios organizacionales: la estrategia. La perspectiva clásica en este campo promovió la idea de que proyectarse hacia el futuro implica diseñar un plan (una serie de acciones deliberadas). Avances posteriores mostraron que la estrategia podía ser comprendida de otras formas. Sin embargo, la evolución del campo privilegió en alguna medida la mirada clásica estableciendo, por ejemplo, múltiples modelos para ‘formular’ una estrategia, pero dejando en segundo lugar la manera en la que esta puede ‘emerger’. El propósito de esta investigación es, entonces, aportar al actual nivel de comprensión respecto a las estrategias emergentes en las organizaciones. Para hacerlo, se consideró un concepto opuesto —aunque complementario— al de ‘planeación’ y, de hecho, muy cercano en su naturaleza a ese tipo de estrategias: la improvisación. Dado que este se ha nutrido de valiosos aportes del mundo de la música, se acudió al saber propio de este dominio, recurriendo al uso de ‘la metáfora’ como recurso teórico para entenderlo y alcanzar el objetivo propuesto. Los resultados muestran que 1) las estrategias deliberadas y las emergentes coexisten y se complementan, 2) la improvisación está siempre presente en el contexto organizacional, 3) existe una mayor intensidad de la improvisación en el ‘como’ de la estrategia que en el ‘qué’ y, en oposición a la idea convencional al respecto, 4) se requiere cierta preparación para poder improvisar de manera adecuada.
Resumo:
We consider a general coupling of two chaotic dynamical systems and we obtain conditions that provide delayed synchronization. We consider four different couplings that satisfy those conditions. We define Window of Delayed Synchronization and we obtain it analytically. We use four different free chaotic dynamics in order to observe numerically the analytically predicted windows for the considered couplings.
Resumo:
The simulation of ultrafast photoinduced processes is a fundamental step towards the understanding of the underlying molecular mechanism and interpretation/prediction of experimental data. Performing a computer simulation of a complex photoinduced process is only possible introducing some approximations but, in order to obtain reliable results, the need to reduce the complexity must balance with the accuracy of the model, which should include all the relevant degrees of freedom and a quantitatively correct description of the electronic states involved in the process. This work presents new computational protocols and strategies for the parameterisation of accurate models for photochemical/photophysical processes based on state-of-the-art multiconfigurational wavefunction-based methods. The required ingredients for a dynamics simulation include potential energy surfaces (PESs) as well as electronic state couplings, which must be mapped across the wide range of geometries visited during the wavepacket/trajectory propagation. The developed procedures allow to obtain solid and extended databases reducing as much as possible the computational cost, thanks to, e.g., specific tuning of the level of theory for different PES regions and/or direct calculation of only the needed components of vectorial quantities (like gradients or nonadiabatic couplings). The presented approaches were applied to three case studies (azobenzene, pyrene, visual rhodopsin), all requiring an accurate parameterisation but for different reasons. The resulting models and simulations allowed to elucidate the mechanism and time scale of the internal conversion, reproducing or even predicting new transient experiments. The general applicability of the developed protocols to systems with different peculiarities and the possibility to parameterise different types of dynamics on an equal footing (classical vs purely quantum) prove that the developed procedures are flexible enough to be tailored for each specific system, and pave the way for exact quantum dynamics with multiple degrees of freedom.
Resumo:
Effective field theories (EFTs) are ubiquitous in theoretical physics and in particular in field theory descriptions of quantum systems probed at energies much lower than one or few characterizing scales. More recently, EFTs have gained a prominent role in the study of fundamental interactions and in particular in the parametriasation of new physics beyond the Standard Model, which would occur at scales Λ, much larger than the electroweak scale. In this thesis, EFTs are employed to study three different physics cases. First, we consider light-by-light scattering as a possible probe of new physics. At low energies it can be described by dimension-8 operators, leading to the well-known Euler-Heisenberg Lagrangian. We consider the explicit dependence of matching coefficients on type of particle running in the loop, confirming the sensitiveness to the spin, mass, and interactions of possibly new particles. Second, we consider EFTs to describe Dark Matter (DM) interactions with SM particles. We consider a phenomenologically motivated case, i.e., a new fermion state that couples to the Hypercharge through a form factor and has no interactions with photons and the Z boson. Results from direct, indirect and collider searches for DM are used to constrain the parameter space of the model. Third, we consider EFTs that describe axion-like particles (ALPs), whose phenomenology is inspired by the Peccei-Quinn solution to strong CP problem. ALPs generically couple to ordinary matter through dimension-5 operators. In our case study, we investigate the rather unique phenomenological implications of ALPs with enhanced couplings to the top quark.
Resumo:
The main purpose of this thesis is to go beyond two usual assumptions that accompany theoretical analysis in spin-glasses and inference: the i.i.d. (independently and identically distributed) hypothesis on the noise elements and the finite rank regime. The first one appears since the early birth of spin-glasses. The second one instead concerns the inference viewpoint. Disordered systems and Bayesian inference have a well-established relation, evidenced by their continuous cross-fertilization. The thesis makes use of techniques coming both from the rigorous mathematical machinery of spin-glasses, such as the interpolation scheme, and from Statistical Physics, such as the replica method. The first chapter contains an introduction to the Sherrington-Kirkpatrick and spiked Wigner models. The first is a mean field spin-glass where the couplings are i.i.d. Gaussian random variables. The second instead amounts to establish the information theoretical limits in the reconstruction of a fixed low rank matrix, the “spike”, blurred by additive Gaussian noise. In chapters 2 and 3 the i.i.d. hypothesis on the noise is broken by assuming a noise with inhomogeneous variance profile. In spin-glasses this leads to multi-species models. The inferential counterpart is called spatial coupling. All the previous models are usually studied in the Bayes-optimal setting, where everything is known about the generating process of the data. In chapter 4 instead we study the spiked Wigner model where the prior on the signal to reconstruct is ignored. In chapter 5 we analyze the statistical limits of a spiked Wigner model where the noise is no longer Gaussian, but drawn from a random matrix ensemble, which makes its elements dependent. The thesis ends with chapter 6, where the challenging problem of high-rank probabilistic matrix factorization is tackled. Here we introduce a new procedure called "decimation" and we show that it is theoretically to perform matrix factorization through it.